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THEORETICAL AND EXPERIMENTAL STUDY OF
THERMOACOUSTIC ENGINES

ABSTRACT

A three year study of thermoacoustic engines operating as prime movers and
refrigerators was completed. The major thrusts of this effort was the use and theoretical
description of ceramic honeycomb structures as the active element in thermoacoustic
engines. An air-filled demonstration prime mover was constructed and demonstrated at
Acoustical Society of America and IEEE meetings. A helium—filled test prime mover
was designed and built and is being employed in studies of the threshold of oscillation
as a function of temperature difference and pressure. In addition, acoustically based
theories of the thermoacoustic engine have been developed and tested for a paraliel plate
stack at the Naval Postgraduate School (NPS) and for a honeycomb stack at the
University of Mississippi (UM). Most of this work is described in detail in the attached
publications. In this report we will give an overview of the research completed to date

and its relationship to work performed at NPS and to future work at UM.




THEORETICAL AND EXPERIMENTAL STUDY OF
THERMOACOUSTIC ENGINES

INTRODUCTION

Thermoacoustic engines are devices which convert heat energy to acoustic energy
or acoustic energy to a heat transfer. The acoustic wave serves as the pump to
compress and displace the working fluid. In a prime mover, a section of a standing
wave tube is occupied by a stack, a porous material with an impressed temperature
gradient. The hot end of the stack faces the pressure antinode. The entropy and
vorticity modes modify the standing acoustic wave such that the temperature change lags
the compression and work is done on the gas and the acoustic wave is amplified.

In a refrigerator, the acoustic wave is driven by an electroacoustic driver (or by a
thermoacoustic prime mover) and the stack carries the opposite temperature gradient from
the prime mover. In this case the acoustic wave transfers energy from the cool end of
the stack to the hot end where heat exchangers remove the heat. A detailed description
of thermoacoustics is contained in Ref. 1.

Previous analytical work with realistic thermoacoustic engines has relied on
Runge—Kutta integration to evaluate the behavior of the entire standing wave tube. In
Section I we will briefly describe our efforts to develop an acoustic or impedance based
method for an element by element analysis of thermoacoustic engines. The attached
publications provide a detailed description of this analysis.2

Two types of stacks have been employed in thermoacoustic devices, parallel plates
or a section of the tube wall. The former type was constructed either by parallel linear
plates or by a spiral shaped by winding up thin sheets of plastic material. Sections of

closed tubes with large temperature gradients have been observed to resonate naturally.
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The Sondhauss tube results when blown glass develops a temperature gradient while
Taconic oscillations are observed when glass tubes reach from room temperature to
cryogenic temperatures.

A portion of our effort was to extend the acoustic based formulation of
thermoacoustics to other pore geometries based on previous experiments at UM on the
analysis of sound propagation ir porous media. In particular, we have employed rigid
ceramic catalytic converter cores as the stack material. These cores are attractive as stack
material since they provide a regular cross section and are cheap and easy to form. In
addition, the two—dimensional matrix may reduce turbulence effects relative to the
parallel plate arrangement at high amplitudes.

The development of an acoustic based formulation for different shapes (particularly
rectangular pores) is described in Section II. Details of this analysis and background
work on acoustic propagation in rectangular porous materials are presented in Refs. 3, 4
and S.

The formulation developed in Ref. 3 was used to design a helium—filled prime
mover with a minimum onset temperature difference. The prime mover was constructed
and measurements of onset temperature difference versus pressure are in progress. This
work is described in Section III.

Section IV describes the application of impedance measurements to the air-filled
demonstration prime mover.6 These measurements illustrate the power of acoustic
analysis and measurement techniques to thermoacoustic problems.

Section V summarizes our accomplishments in this three year effort and briefly

describes future work.
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I. AN ACOUSTICS BASED STUDY OF THE THERMOACQUSTIC
PRIME MOVER BELOW ONSET

Henry Bass worked with Anthony A. Atchley, Thomas Hofler and Hsiao—Tseng
Lin at NPS in developing and testing an acoustic based formulation of a thermoacoustic
prime mover.2 A counterpropagating plane wave description of the stack was developed
based on Zwikker and Kosten's analysis of sound propagation in porous rigid media.
The thermoacoustic effects and the impressed temperature gradient lead to different
complex wave numbers for propagation with the temperature gradient and against it.

This theory was compared to measurements of the Q factor of the resonate tube
versus temperature difference at different pressures. Good agreement was achieved.
The worst discrepancies occurred for low temperature gradients when the acoustic
description should be best. Apparently the thermoacoustic effects at higher temperature

gradients dominate this source of error.

II, GENERAL FORMULATION OF THERMOACOUSTICS
FOR ARBITRARY STACK CROSS SECTIONS

Basic research on the acoustic description of regular rectangular ceramic catalytic
cores3 was extended to thermoacoustic calculations.3 The effect of the pore shape on
the interaction of the acoustic mode with the vorticity and thermal mode is given by the

function F(x,y,A) which satisfies
F(x,y;A) + (R%/iA2) AF(x,y;h) = 1, . (1)

subject to the boundary condition of F(x,y;A) = O at the pore walls. R is a characteristic
transverse dimension of the pore and A is the shear wave number, A = Ro(pow/n)!/2,

or the thermal disturbance number, At = R(pomcp/x)lﬂ. Use of the Prandtl number,




Npr = ncp/x, gives At = l(Np,)l/z. Since we are interested in average values, the
F(x,y,A) are averaged over the pore cross section to form F(A). The functional form of
F(A) was determined for square, rectangular, triangular, and circular pores as well as for
parallel slits.

The average pressure and particle velocity differential equations in the pore are then

used to form an impedance differential equation:
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Since the gas properties vary with temperature along the stack, Eq. (2) must be
evaluated by numerical integration. The heat and work flows in the stack have also been
evaluated in terms of F(A) and F(At). These equations are used ta determine the steady

state condition for the thermoacoustic devices.




In a refrigerator, the operating parameters are varied until the heat flow in the stack
is constant as a functioﬂ of position. This determines the temperature profile in the
stack.

Calculation of the F(A) for the various pore shapes demonstrates that the parallel

plate is the optimum shape for the short stack approximation for linear acoustic waves.

III. SPECIFIC IMPEDANCE MEASUREMENTS OF A PRIME MOVER
A. Prime Mover Impedance Measurements6

The experimental arrangement used is shown in Fig. 1. A prime mover was
mounted vertically and an impedance tube was attached at the vottom via a flange. The
prime mover was built originally for use as a demonstration device and for practice in
fabricating the elements. A section of resonator made of copper pipe of length 20.96 cm
and inner radius 4.32 cm, and capped at the top, was the first element. High
temperature heat tape was wrapped around the entire section followed by a 1 inch layer
of heat insulating material. Heat was transported by conduction to the next element
which was the hot heat exchanger. A type K thermocouple was placed inside the hot
exchanger to monitor the temperature. The stack (or thermoacoustic engine) which
supports the temperature gradient was the next element and will be discussed below.
Heat was removed at the cold exchanger by water from a the lab sink. Another section
of resonator, which was wrapped with water—circulating tubing, was the next element.
This section was 44.45 cm long and of radius 4.32 cm.

The heat exchangers were made by laminating with epoxy copper sheets spaced by
aluminum sheets. The copper—aluminum laminate was then turned to a cylindrical shape
using a lathe. The cylindrical boundary was clad with a shell of copper about 2.5 mm
thick by using an electroplating technique. The heat exchanger was then machined into a

disk form and inserted into a flanged hoider for attachment to the other elements. The
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Figure 1. Demonstration thermoacoustic oscillator and analysis impedance tube.




aluminum was etched away using a dilute hydrochloric acid solution. The resulting heat
exchanger was made entirely of copper with plate to plate spacing of the copper strips
equal to 1.65 mm. The cold heat exchanger flange included an open tank for water
circulation around the periphery of the plates. The hot and cold exchangers were 1.638
cm and 1.610 cm long, and had open to total volume ratios of Q = 0.74.

The stack was a ceramic cylindrical sample of a monolithic catalyst support.
Reference 4 describes the analysis of some acoustic properties of the catalyst supports.
It is a section of a porous medium in which the open pores have square boundaries of
semi—width 0.77 mm, and are straight tubes in the z direction (Fig. 1). The ceramic
sample had a radius of 7.3 cm. To attach it to the heat exchangers, a ring of inner
radius 4.32 cm, outer radius 7.3 cm, and depth 3.2 mm was removed from the ceramic
sample. This. left a protruding central portion. Copper rings of thickness 3.2 mm, inner
radius 4.32 cm, and outer radius of 12 cm were supported between the ends of the
ceramic piece using threaded rod stand—offs. Holes were drilled in the copper disks to
match the heat exchanger flange holes.

An impedance tube with an inner radius of 7.3 cm was attached at the bottom of
the prime mover. Microphones were placed 5 cm from the bottom of the prime mover
and the speaker below (10 cm separation). The impédance tube’ is generally used to
determine the specific acoustic impedance (or pressure divided by particle velocity) at
z=0 in Fig. 1. Denote by P, V;, and v, the pressure, volume velocity, and particle
velocity at z = 0 in the impedance tube of cross—sectional area A} = 167.5 cm2, Denote
by subscript 2 the corresponding quantities for the prime mover.  Assuming
conservation of pressure and volume velocity at the interface, Py/Vy = Pp/V,. The
quantity measured using the impedance tube was Z; =P /vy = A P}/V; = A| Py/Vy =
A Po/(vaA5). The desired quantity Z = Pp/v, was thus determined from Zp = Z,

Ay/A;. Neglect of interfacial effects of the impedance tube to prime mover radius
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discontinuity is a low frequency approximation. The prime mover was evaluated using

swept sine wave analysis at sufficiently low amplitudes that negligible heat was
transported thermoacoustically. The measured impedance can become a function of the
amplitude of driving pressure signal at high levels due to the alteration of the static
temperature gradient by thermoacoustic streaming.8

The real and imaginary parts of the measured spc.ific acoustic impedance as a
function of the temperature difference are shown in Figs. 2a and 2b. The real pan
becomes negative at some frequencies, indicating the possibility of having an active
system with reflection coefficients greater than one. When the impedance tube is
removed, which of course changes the prime mover termination impedance, sound at a
nominal frequency of 115 Hz is produced for AT 2 176 K. The expression for
radiation specific acoustic impedance!0 at the mouth of the prime mover is Zp3(®) = -
Pocl(koR/2)2 - i 0.6 kgR] where kg = ©/c, @ is the radian frc.quency, Po is the ambient
air density, c is the adiabatic sound speed of air, and R = 4.32 c¢m is the tube radius.
The minus sign occurs because of our choice for the positive direction of z in the
coordinated system on Fig. 1. Radiation impedance is represented by dashed lines in
Figs. 2a and 2b. One immediate check of the measurements is that the initial operating
point (115 Hz, AT = 176 K) given by the plus symbol occurs, for both the real and
imaginary parts of the radiation impedance, at the intersection of the calculated and

measured impedance values.

B. Conclusions

Specific acoustic impedance measurements were made as a function of the
temperature gradient across the stack. Among other uses, these measurements are
helpful for evaluating the possibility of using the prime mover 1s a sound source.

Another interpretation of Fig. 2 is, for example, that the plane wave reflection coefficient

10
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Figure 2a. Real part of the specific acoustic impedance at the mouth of the prime mover.
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Figure 2b. Imaginary part of the specific acoustic impedance.
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at 80 Hz and AT = 160 K is > 1 for waves incident in an infinite length tube of the
same diameter as the prime mover but in the location of the impedance tube in Fig. 1.
For prime movers far above the onset of sound production, or for strongly driven
thermoacoustic refrigerators, the temperature distribution from hot to cold is not simply
the static distribution established by the thermal conductivity of the gas and stack. The
presence of the strong acoustic wave influences its thermal surroundings® by heat
transport and in this sense the thermoacoustic oscillation is an example of a self-

interacting wave process.

IV. ONSET MEASUREMENTS IN AN OPTIMIZED
HELIUM-FILLED PRIME MOVER

The theory described in Section II and in Ref. 3 was used to design a helium—filled
thermoacoustic engine (see Fig. 3). The design goal for this tube was to produce sound
at as small a temperature gradient as possible. After construction, the thermoacoustic
engine is being tested to compare the predicted onset gradient to the measured.

In initial tests the tube was filled with helium to 3 kPa. Figure 4 shows the
computed stability curve for the fundamental frequency near 308 Hz and the Ist
harmonic near 605 Hz. Ambient pressure is the horizontal axis. Temperature difference
between hot and cold ends is on the vertical axis. For temperatures below the boundary
between stable and unstable no gas oscillations occur. Thermal boundary layer thickness
8t = (2k/potcy)!/2 =< @=1/2 Py~1/2 where Py is the ambient pressure in the tube. For
fixed tube length as in the thermoacoustic engine, the boundary layer thickness can be
adjusted by changing Pgy. For low Py, the boundary layer is much thicker than the pore
size in the stack and heat exchangers so gas viscosity chokes the flow. For Py =173
kPa the boundary layer thickness is optimal for thermoacoustic effects and the lowest

onset temperature of around 180°C occurs. One factor that greatly contributes to
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SCALE DRAWING OF UM TAE:

R=4281cm
L=23.07cm

n=1

R =4.261 cm
L=1290cm

» =0.995

R=1.118 mm
L=1814cm
» = 0.64

R =077 mm

L=5.08cm

,, = 0.69
R=1.118mm
L=1638cm
» =0.64

DEFINITIONS:

R = 2 pore area / pore perimeter

L = length of section

» = porosity of section relative to the largest
area element, the hotend in_this case,

Figure 3. Scale drawing for the fundamental and first harmonic for the UM TAE.
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Figure 4. Stability curves for the fundamental and first harmonic for the UM TAE.
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minimizing the onset temperature is the location of the stack and heat exchangers relative
to the lengths of the hot and cold ends. When the elements are too close to the hot end
gas particle displacement is small so the required temperature gradient becomes
prohibitively large. When you try to do work on the gas it responds by changing
pressure but only a small particle displacement occurs. However as the elements move
too close to the center of the tube where a pressure node occurs the work done
approaches zero. When you try to do work on the gas at this point in the standing
wave the gas responds by undergoing a large displacement, but only a small pressure
change occurs. Somewhere between the pressure node at the center and the particle
velocity node at the end is an optimal location for the location of the elements. The
optimal location is closer to the end where particle velocity is less so that losses due to
gas viscosity are minimal. The thermoacoustic engine was designed to optimize the
location of the elements.

Since 8y o Tg0-8 w~1/2 Py~1/2 it seems odd at first glance that the minimum of
the first harmonic would be at a higher pressure than the fundamental. The temperature
dependence is in part due to ambient density and in part to thermal conductivity.
Supposing there to exist an optimal boundary layer thickness, then as  is increased,
Po should decrease to balance the equation. However, there is no single optimal
boundary layer thickness for the tube. Viscous losses can be defeated by aiming at thin
boundary layers. The stack location helps to minimize viscous losses for the
fundamental, but not the first harmonic. Additionally, particle displacement is smaller at
higher frequencies so the necessary temperature gradient |T,| to make I > 1 for onset
increases. (The pressure in the standing wave changes from maximum to minimum over
a shorter distance as the frequency increases.) At a frequency double the fundamental,
the ambient pressure must diminish by a factor of 21/2 to get the same optimal boundary

layer thickness. But the average temperature (T + Tc)/2 must increase by a factor of
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2. To offset the temperature increase, the ambient pressure must increase by a factor of
208, Thus it is reasonable that the ambient pressure must increase by a net amount
approximately equal to 20-3 to achieve the boundary layer thickness for optimal
thermoacoustic pumping of the wave. In order to experimentally observe both modes,
the thermoacoustic engine should be heated to a temperature in the unstable region of the
1st harmonic with the Q of the resonant cavity so low that there is no oscillation of the
fundamental. When the Q is increased, both modes should oscillate .

Figure 5a is the 1/Q curve for the fundamental and 1st harmonic for a pressure of
173 kPa. When 1/Q = 0 the thermoacoustic engine is at the perilous bo:ndary between
stability and instability. For AT above the onset value 154.6 K for the fundamental, the
time evolution of the pressure follows the form exp(rnfyt/[Q|) until nonlinearity becomes
apparent. The exponential growth factor for the fundamental has a maximum at AT =
800 K. For higher temperatures the ambient temperature in the hot end causes the
ambient sound speed, which is ¢ o< T01/2, to increase. As a rough guide for computing
the resonant frequency of the tube, note that resonance should occur for 2kg.L. +
2kgpLy, = 27 or alternatively f = 1/[2(L./c. + Ly/cy)] where L and c; are the lengths
and sound speeds of the cold section, etc. Thus as ¢}, increases we can view this as an
effective shortening of the hot end, which puts the elements closer to a velocity node
with concomitant decrease of effectiveness. We can also understand the increase of the
resonant frequency with temperature shown in Fig. Sb from the equation for fy.
Dispersion effects in the thermoacoustic elements are somewhat apparent in this figure in
that the frequency of the first harmonic is not twice the fundamental. This difference is
much more noticeable in the original numbers from which these files were made.

Figure 6 shows the experimental onset temperature gradient compared to the
theoretical gradient. The cold heat exchanger is maintained at Ty = 20°C. The

experimental values show good agreement with the theoretical curve, but shifted upward
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by approximately 4°C. Thermocouples placed on the exterior of the tube show a
temperature gradient along the length of the tube from the cold heat exchanger to the
cold end. This reverse gradient could account for this shift.

New experiments are being performed with more uniform cooling of the tube and

with thermocouples placed in the stack. These improvements should reduce the error.

V. SUMMARY AND CONCLUSION

The three year study of thermoacoustic devices has been highly successful although
we have not accomplished all we hoped. Ceramic catalytic converter cores have been
used as the stack material in air—filled and helium—filled thermoacoustic prime movers.
A general theory for thermoacoustic engines based on the theory of acoust = propagation
in porous materials has been developed for a single layer model for a parallel plate
stack? and for arbitrary pore shapes using numerical integration.3 The results of these
theories agree well with onset data in thermoacoustic prime movers as well as impedance
tube measurements.6 |

It was originally planned to build a thermoacoustically driven refrigerator in the
third year of this study. We have not built this device yet but it will not be difficult to
design and build. The helium—filled thermoacoustic engine is modular in construction so
that additional elements can be easily incorporated. The computer program contained in
Appendix A will be used to optimize the design of the engine—refrigerator so that
nonlinear effects will be minimized.

The work of the past three years forms a good basis for future work in the physics

of thermoacoustic refrigerators and engines.
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I APPENDIX: FORTRAN PROGRAM FOR ANALYSIS OF llll UM TAE

“CESS: ; ’ : PASSWORD FROGGY
&IF &INDEX NE 0 £GOTO -HEREWEGO

&TYPE ENTER THE NAME OF THE PARAMS FILE WHICH DESCRIBES THE TAE.
&READ ARGS

-HEREWEGO

VMFCLEAR

COPYFILE &! PARAMS A TEMP PARAMS A (REPLACE

EXEC GLOBALS

FILEDEF | DISK TDATA A

FILEDEF 2 DISK TEMP PARAMS A

FILEDEF 15 DISK PRESS DATA A (RECFM V

FILEDEF 16 DISK WORKFLOW DATA A (RECFM V

FILEDEF 17 DISK HEATFLOW DATA A (RECFM V

FILEDEF 18 DISK IMPED3D DATAA (RECFMV

FILEDEF 19 DISK IMPED DATAA (RECFMV

FILEDEF 20 DISK ENTHALPY DATA A (RECFM V

FILEDEF 21 DISK WORKDRIV DATA A (RECFM V

FILEDEF 27 DISK QUALREC DATA A

FILEDEF 28 DISK RESFREQ DATA A

FILEDEF 29 DISK QUALFACT DATA A

FILEDEF 30 DISK POSVSDT DATA A

FILEDEF 37 DISK QUALREC DATAEIG A

FILEDEF 38 DISK RESFREQ DATAEIG A

FILEDEF 39 DISK QUALFACT DATAEIG A

FILEDEF 41 DISK TOZ DATA A

FILEDEF 42 DISK REIMPED DATA A (RECFM V

FILEDEF 43 DISK IMIMPED DATA A (RECFM V

FILEDEF 44 DISK STABCURYV DATA A (RECFM V

* PROGRAM FOR COMPUTING PROPAGATION CONSTANTS....

*LOAD TAEUTIL ( CLEAR NOMAP START

* GENERAL PROGRAM FOR COMPUTING ZP,HEAT,WORK.

*LOAD TAEHE2 ( CLEAR NOMAP START

* GENERAL PROGRAM, FINITE DIFF IN STACK, FOR COMPUTING Z,P,HEAT,WORK.
*LOAD TAEHE3 ( CLEAR NOMAP START

* GENERAL PROGRAM, FINITE DIFF IN STACK, FOR COMPUTING Z,P,HEAT,WORK.

* GAS ABSORPTION IS INCLUDED IN THE OPEN TUBE SECTIONS.

*LOAD TAEHE3V2 (CLEAR NOMAP START

* GENERAL PROGRAM, RUNGE KUTTA IN STACK, FOR COMPUTING Z,P,HEAT,WORK.
*LOAD TAERUNGE ( CLEAR NOMAP START

* GENERAL PROGRAM, RUNGE KUTTA IN STACK, FOR COMPUTING Z,P, HEAT,WORK.
* CAN ALSO COMPUTE TRAVELING WAVES. SOMEWHAT OPTIMIZED.

*LOAD TAEHEUNG ( CLEAR NOMAP START

* GENERAL PROGRAM FOR COMPUTING Z,PHEAT,WORK. BASED ON DF/DLAMBDA.
*LOAD TAEHE4 ( CLEAR NOMAP START

* PROGRAM FOR COMPUTING THE Q FROM COMPLEX EIGENFREQUENCY.

*LOAD TAEHEQ (CLEAR NOMAP START

* PROGRAM FOR COMPUTING THE Q FROM COMPLEX EIGENFREQUENCY.

*+ USES INPUT FROM TAEHE3 AS INPUT TO START THINGS OFF WITH.

*LOAD TAEHEQZ ( CLEAR NOMAP START -

¢ ALL RUNGE-KUTTA PROGRAMS ABOVE HERE ARE NOT CORRECTED.

* PROGRAM FOR COMPUTING THE Q AS A FUNCTION OF TEMPERATURE IN AN EASY
* WAY. USES RUNGE KUTTA INTEGRATION.

* SECOND PROGRAM IS A COMPLEX NUMBER VERSION TO GET THE COMPLEX EIG FRE.
*LOAD TAEAUTO ( CLEAR NOMAP START

*LOAD TAECAUTO ( CLEAR NOMAP START

* VERSION OF TAECAUTO FOR AIR FILLED TUBES.

* LOAD TAECAIR ( CLEAR NOMAP START

* TO PLOT 1/Q AND RES VERSUS LAMBDA, USING TAECAIR, FOR A PRIMEMOVER.
* LOAD TAECBALT ( CLEAR NOMAP START
* TAECMONT: PROGRAM BASED ON TAECAUTO TO COMPUTE THE Q AND RESFREQ FOR

R |
=




* THE MONTEREY TUBE. TAKES INTO ACCOUNT THE DEPENDENCE ON TEMPERATURE
* WHEN COMPUTING THE THERMAL CONDUCTIVITY OF THE STACK.

*LOAD TAECMONT ( CLEAR NOMAP START

* UMTAE FORTRAN : PROGRAM FOR DESIGN OF THE UMTAE. USED'] AECAUTO ASTHE
* STARTING PROGRAM.

*LOAD UMTAE (CLEAR NOMAP START

* UMTAECH: CHECK OF UMTAE WITH MONTEREY DATA

*LOAD UMTAECH (CLEAR NOMAP START

* PROGRAM FROM TAECBALT FOR COMPUTING THE RESPONSE OF THE DEMO TAE IN AIR
*LOAD TAEAIRD (CLEAR NOMAP START

* UMTAEV2 FORTRAN : PROG FOR DESIGN OF THE UMTAE. USED TAECAUTO AS THE

* STARTING PROGRAM.

LOAD UMTAEV2 ( CLEAR NOMAP START

ERASE TEMP PARAMS A

ERASE FILE SCRATCH A

FILEDEF * CLEAR

&EXIT

TAE PARAMETER FILE. ACTUAL #S OF THE UMTAE TUBE.
TAE PARAMETER FILE. ACTUAL #S OF THE UMTAE TUBE.
DEFINE THE TUBE FROM RIGHT TO LEFT. AT LEFTONE USUALLY HAS THE DRIVER.
MINIMUM FREQUENCY, MAXIMUM FREQUENCY, (HZ), AND NUMBER OF FREQ. POINTS.
250.000 400. 300

TERMINATION ATTHE RIGHTENDOFTHE TUBE.
ONE OF RIGID, FREE, OR INFIN. INFIN IS AN INFINITE TUBE.

RIGID
AMBIENT PRESSUREIN THE TUBE AND THE DRIVER PRESSURE AMPLITUDE FOR ALL
FREQUENCIES. PRESSURE INPASCAL, DRIVER DISPLACEMENT IN METERS.

30005 1.D-8
NUMBER OF SECTIONS IN THE TAE. E.G. AN OPEN SECTION, RGH HEAT EXCH,
STACK, LEFT HEAT EXCH, AND ANOTHER OPEN SECTION WOULLD BE 5. INTEGER.
5

EREGEESN DEFIN'TION OF SECrION I LI AT A I IS P AT 21 R 2222222 S22 R L 22
SECTION TYPE, ONE OF OPENTU, HEXCH, OR STACK.

OPENTU
ELEMENT TYPE. HAS MEANING ONLY FOR HEXCH OR STACK SECTION TYPES.
ONE OF RECT, CYL, OR SLIT, DEFINING THE TYPE OF PORES.

SLIT
NUMBER OF LAYERS THIS SECTION IS BROKEN UP INTO.
I<= NUMLAY <= 100 PRACTICALLY.

1

LENGTHOFTHESECTION.
METERS.

23.07D-2
TEMPERATURE OF THE RCH END OF THE SECTION. FOR AN ISOTHERMAL SECTION
SUCH AS OPEN TUBE OR HEAT EXCHANGERS, USE TRGH = TLEFT. KELVIN.
293.000000000000000
TEMPERATURE ATTHE LEFT END OF THE SECTION.
SEENOTE ABOVE. KELVIN.
293.
RATIO OF 2 PORE AREA TO PORE PERIMETER (M). FOR: CYL=RADIUS, SLIT=
WIDTH, RECT=2SW A/(1+A) A>1=SIDES ASPECT RATIO, SW=SHORTEST SEMIWIDTH.
4.281D-2
ASPECT RATIO OF THE PORE. VALID FOR RECTANGULAR PORESONLY.
NECESSARY AS AGENERALRULE.
1.0D0
POROSITY OF THE SECTION. FOR OPEN TUBE, USE POROSITY =1.
FOR OTHER TYPES OF SECTIONS, POROSITY <=1.
1.D0

END OF SECTION 1 EEERHEP SR SRRERIO SRR RSB NI RN I IREE SRS R R RS RR b RRERN

[EXZ L2 L1 DEF]N'T]ON OF SEC["ON 2 (SIS RTT RS SLE ST RS S22 22 R 20 A2 0 L)




SECTIONTYPE, ONE OF OPENTU, HEXCH, OR STACK.
HEXCH
ELEMENTTYPE. HAS MEANING ONLY FOR HEXCH OR STACK SECTION TYPES.
ONE OF RECT, CYL, OR SLIT, DEFINING THE TYPE OF PORES.
SLIT
NUMBER OF LAYERS THIS SECTION IS BROKEN UP INTO.
{<= NUMLAY <= 100 PRACTICALLY.
1
LENGTHOFTHESECTION.
METERS.
1.814D-2
TEMPERATURE OF THE RGH END OF THE SECTION. FOR AN ISOTHERMAL SECTION
SUCH AS OPEN TUBE OR HEAT EXCHANGERS, USE TRGH =TLEFT. KELVIN.
293.
TEMPERATURE ATTHE LEFTEND OFTHE SECTION.
SEENOTE ABOVE. KELVIN.
293,
RATIO OF 2 PORE AREA TO PORE PERIMETER (M). FOR: CYL=RADIUS, SLIT=
WIDTH, RECT=2SW A/(1+A) A>1=SIDES ASPECT RATIO, SW=SHORTEST SEMIWIDTH.
1.118D-3
ASPECTRATIOOFTHE PORE. VALID FOR RECTANGULAR PORESONLY.
NECESSARY AS A GENERAL RULE. ASPECT RATIO => 1 ALWAYS.
1.0D0
POROSITY OF THE SECTION. FOR OPEN TUBE, USE POROSITY =1.
FOR OTHER TYPES OF SECTIONS, POROSITY <=1.
.64D0
END OF SECI'ION 2. SRR EEN PSSO PR R AR RS R REARBRRRRRIRRERERQR RSB EI Rk
EA L2 L L L] DEFINIT[ON OF SEcrloN 3 SRRBPFEERRRENENPR BN B AR R R EDR NSRS BRIES
SECTION TYPE, ONE OF OPENTU, HEXCH, OR STACK.
STACK
ELEMENTTYPE. HASMEANING ONLY FOR HEXCH OR STACK SECTION TYPES.
ONE OF RECT, CYL, OR SLIT, DEFINING THE TYPE OF PORES.
RECT
NUMBER OF LAYERS THIS SECTION IS BROKEN UP INTO.
l<= NUMLAY <= 100 PRACTICALLY. (WAS 20 AT ONE TIME)
25
LENGTHOFTHESECTION.
METERS.
5.08D-2
TEMPERATURE OF THE RGH END OF THE SECTION. FOR AN ISOTHERMAL SECTION
SUCH AS OPEN TUBE OR HEAT EXCHANGERS, USE TRGH = TLEFT. KELVIN.
293.
TEMPERATURE ATTHELEFT END OF THE SECTION.
SEENOTE ABOVE. KELVIN.
293.
RATIO OF 2 PORE AREA TO PORE PERIMETER (M). FOR: CYL=RADIUS, SLIT=
WIDTH, RECT=2SW A/(1+A) A>1=SIDES ASPECT RATIO, SW=SHORTEST SEMIWIDTH.
.77D-3
ASPECT RATIO OF THE PORE. VALID FOR RECTANGULAR PORESONLY.
NECESSARY AS A GENERAL RULE. ASPECT RATIO => 1 ALWAYS.
1.0D0
POROSITY OF THE SECTION. FOR OPEN TUBE, USE POROSITY =1.
FOR OTHER TYPES OF SECTIONS, POROSITY <=1.
.69D0
END OF SECTION 3. ##4s3600000000sassstsssssnasssdassassdssssssssasateiiy
(2211221 DEFlNlTION OF SECT[ON 4 AP E IR PENOEER RS ER SRS e bR AR RS RN
SECTION TYPE, ONE OF OPENTU, HEXCH, OR STACK.
HEXCH




ELEMENT TYPE. HAS MEANING ONLY FOR HEXCH OR STACK SECTION TYPES.
ONE OF RECT, CYL, OR SLIT, DEFINING THE TYPE OF PORES.
SLIT :
NUMBER OF LAYERS THIS SECTION IS BROKEN UP INTO.
l<= NUMLAY <= 100 PRACTICALLY.
1
LENGTHOFTHESECTION.
METERS.
1.638D-2
TEMPERATURE OF THE RGH END OF THE SECTION. FOR AN ISOTHERMAL SECTION
SUCH AS OPEN TUBE OR HEAT EXCHANGERS, USE TRGH = TLEFT. KELVIN.
293.
TEMPERATURE AT THE LEFT END OF THE SECTION.
SEENOTE ABOVE. KELVIN.
293.
RATIO OF 2 PORE AREA TO PORE PERIMETER (M). FOR: CYL=RADIUS, SLIT=
WIDTH, RECT=2SW A/(1+A) A>1=SIDES ASPECT RATIO, SW=SHORTEST SEMIWIDTH.
1.118D-3
ASPECT RATIO OF THE PORE. VALID FOR RECTANGULAR PORESONLY.
NECESSARY AS A GENERAL RULE. ASPECT RATIO => | ALWAYS.
1.0D0
POROSITY OF THE SECTION. FOR OPEN TUBE, USE POROSITY = 1.
FOR OTHER TYPES OF SECTIONS, POROSITY <=1.
.640D0 _
END OF SECr]oN 4 CEBR SN RERRER RPN RR RSP RN R RIS RN SR B R R SRR S IR NS B h k%
XL LT DEF]NIT[ON OF SECrION 5 ARAEEESERRERBRR R ARG EBERPRRRER B RR kRS
SECTION TYPE, ONE OF OPENTU, HEXCH, OR STACK.
OPENTU
ELEMENT TYPE. HAS MEANING ONLY FOR HEXCH OR STACK SECTION TYPES.
ONE OF RECT, CYL, OR SLIT, DEFINING THE TYPE OF PORES.
SLIT
NUMBER OF LAYERS THIS SECTION IS BROKEN UPINTO.
1<= NUMLAY <= 100 PRACTICALLY.
1
LENGTHOFTHE SECTION.
METERS.
129
TEMPERATURE OF THE RGH END OF THE SECTION. FOR AN ISOTHERMAL SECTION
SUCH AS OPEN TUBE OR HEAT EXCHANGERS, USE TRGH = TLEFT. KELVIN.
293.
TEMPERATURE AT THE LEFT END OF THE SECTION.
SEENOTE ABOVE. KELVIN.
293.
RATIO OF 2 PORE AREA TO PORE PERIMETER (M). FOR: CYL=RADIUS, SLIT=
WIDTH, RECT=2SW A/(1+A) A>1=SIDES ASPECT RATIO, SW=SHORTEST SEMIWIDTH.
4261D-2
ASPECT RATIO OF THE PORE. VALID FOR RECTANGULAR PORESONLY.
NECESSARY AS A GENERAL RULE. ASPECT RATIO => 1 ALWAYS.
1.0D0
POROSITY OF THE SECTION. FOR OPEN TUBE, USE POROSITY = 1.
FOR OTHER TYPES OF SECTIONS, POROSITY <=1.
.995D0

END OF SECI'ION 5_ LIEEI ST PR 221 R 2223 R1 2222 222 R a2 22 Rl ddts

FORTRAN CODE FOR THE UM TAE.
The main program is the only part of this program that is specific to the UM TAE.

2SR RCUEERO NS RARA LR LSRR AR A REESERNEREI S0 RN R bR SRR RSNt NbRIRANS

**SUBROUTINE SETVAL * GET THE INPUT PARAMETERS FROM AN EXTERNAL FILE**

Y e e N s R R R R R R R SR R RO A2 A R AR 2R R AR T A A R A R0

SUBROUTINE SETVAL




* VARIABLES WHICH DEFINE THE TAE.

—

CHARACTER*70 SECTYP(100),ETYPE(100). TERMIN
INTEGER NUMLA Y(100),NUMSEC,NUMFRE
REAL*8 DELEM(100), TRGH(100) TLEFT(100),R ATIO(100)
* ASPECT(100),POROS(100),

* THCOND(100),HECAP(100),PAMB,FREMIN. FREMA X, DDRIVE
INTEGER J
CHARACTER DUMMY
COMMON /VARS I/ SECTYP,ETYPE. TERMIN
COMMON /VARSYZ NUMLAY,NUMSEC,NUMFRE
COMMON /VARS3/ DELEM, TRGH.TLEFT.RATIO,
* ASPECT,POROS, THCOND,HECAP,PAMB,FREMIN,FREMAX,DDRIVE
FORMAT (Al)
FORMAT (A70)

REWIND 2
READ (2,1) DUMMY
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) FREMIN,FREMAX NUMFRE
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2.2) TERMIN
CALL NOPAD(TERMIN)
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) PAMB,DDRIVE
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) NUMSEC

DO 10 J=NUMSEC,1,-1

READ (2.1) DUMMY
READ (2,1) DUMMY

READ (2.2) SECTYP())
CALL NOPAD(SECTYP())
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,2) ETYPE())

CALL NOPAD(ETYPE()))

READ (2,1) DUMMY

READ (2,1) DUMMY

READ (2,*) NUMLAY(J)
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) DELEM())
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) TRGH())
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) TLEFT(J)
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) RATIO()
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) ASPECT(J)
READ (2,1) DUMMY
READ (2,1) DUMMY

READ (2,*) POROS())
READ (2,1) DUMMY
THCOND(J)=0.D0

10 HECAP(1)=0.0D0

REWIND 2
RETURN




END
(A A R R R N N R Y R RN R R R R R R R R P R R R R R R R R R R R R R R R R R R R R SRR
* SUBROUTINE NOPAD * GETS RID OF BLANKS IN NAMES ##*+e#s
R R R Y R N R R R R R R R R R RN R N R R R AN RN RSN NN NS R AR NN R RN R AN E LR
SUBROUTINE NOPADXNAME)
CHARACTER*70 OLD NEW,NAME
CHARACTER*1 O(70),N(70)
INTEGER 1)
EQUIVALENCE (OLD,O(1))
EQUIVALENCE (NEW,N(1))
OLD=NAME
NEW='
* .
J=0
DO 101=1,70
N(D=""
IF (O(I) .NE.' ) THEN
J=J+1
N()=0(l)
ENDIF
10 CONTINUE
NAME=NEW
RETURN
END
eI
* SUBROUTINE WFLOW * COMPUTE THE WORK FLOW AT Z **#+s*s++»
I R R R R R R R R R R R R R R 2 2R PR R RS AR RS R RSN R RN RS RS2SR A2 22 R 02
SUBROUTINE WFLOW(P1,Z,W2)
REAL*8 W2
COMPLEX*16P1,Z
W2=CDABS(P1)**2 * DIMAG((0.D0,1.D0)/Z)  2.D0
RETURN
END
e nInmnmnmnmmmnmMmmInmnmmm Mmoo
* SUBROUTINE QFLOW * COMPUTE THE HEAT FLOW AT Z. #**ssssssss
* 1 HAVE ASSUMED THE COEFFICIENT OF THERMAL EXPANSION BETA=1/TEMP. **
Mmoo
SUBROUTINE QFLOW(POROS,P1,Z, FLAM, FLAMT,W,DENS,T0OZ KGAS KSOLID,Q2)
REAL*8 POROS,DENS,TOZ KGAS,KSOLID,Q2,NPR,CP,GAMMA
COMPLEX*16 P1,Z,FLAM,FLAMT,W
COMMON /PHYCON/ GAMMA ,NPR,CP
Q2=POROS*CDABS(P1)*CDABS(P1).2.D0
Q2=Q2*DIMAG((0.D0,1.D0)*(DCONIG(FLAMT)/FLAM-1.DOY
* (POROS*Z*(1.D0+NPR)) -
* TOZ * DENS * CP*(FLAM*NPR +DCONIJG(FLAMT) )/
* (POROS**2 * W*(CDABS(FLAM*Z))**2*(1.D0-NPR**2)))-
* TOZ*(POROS*KGAS + (1.D0-POROS)*KSOLID)
RETURN
END
P e oo
* SUBROUTINE DERIVS * COMPUTE THE DERIVATIVES DZ/DZ AND DP/DZ FOR
* THE RUNGE-KUTTA WORK.
T I T I I T T T T T Y T R T TR Y T
SUBROUTINE DERIVS(ZETA,ZINT ALPRIM,P,Z,DPDZ,DZDZ)
COMPLEX*16 ZETA,ZINT,ALPRIM,P,Z,DPDZ,DZDZ,1,FAC,FAC2
I = (0.D0,1.D0)
FAC = ZZINT
FAC = (1.D0 - FAC*FAC)
FAC2 =1*ZETA * ZINT
DZDZ = FAC2 * FAC +2.D0* ALPRIM*Z

* FAC =1*ZETA * (ZINT - Z*Z/ZINT)
* DZDZ=FAC+2D0*ALPRIM*2Z

DPDZ =FAC2*P/Z
RETURN




END
(R R AR R R R R AR A R R R A RN R N R N R P R A R RN R R AR S RN AR NN
* SUB STAKPM * GET THE MANY PARAMEFERS WHICH ARE TEMPERATURE DEPENDENT
* IN' THE STAK. USED FOR RUNGE KUTTA INTEGRATION.
* THE STACK IS ASSUMED TO HAVE POROUS WALLS.
IARRL RIS R E R R R A R AR R R E R R R R R R RS NS RS R R A AR R R R SN R 2R R
SUBROUTINE STAKPM(ETYPE,W,POROUS,PAMB,T,T0Z,DENS,RATIO,ASPECT,
. FLAM,FLAMT,ZETA ALPRIM ZINT)
CHARACTER*70 ETYPE
REAL*8 POROUS,PAMB,T.TOZ,DENS,RATIO,ASPECT
COMPLEX*16 FLAM,FLAMT,ZETA,ALPRIM ZINT,W,LAMBDA,LAMBDT
* POROUS WALL VARIABLES.
REAL*8 PORTOT,PORWAL,DWALLWFACT
COMPLEX*16 XI
* SUPPORTING ROLE VARIABLES.
REAL*8 SSPEED, VISC,CP,NPR,GAMMA
COMMON /PHYCON/ GAMMA NPR,CP
* SET THE POROUS WALL CONSTANTS FOR THE 200 CELL CERAMIC.
* TO TURN OFF THE POROUS WALL CALCULATION JUST LET X}=1.D0 BELOW.
PORWAL = 0.49D0
DWALL = 100.D-6
PORTOT = POROUS*(1.D0 + 2.D0*PORWAL*DWALL/RATIO)
WFACT = GAMMA *(PORTOT-POROUS)/(2.D0*POROUS)
* BEGIN
CALL VDCHE(T PAMB, VISC,DENS,SSPEED,KGAS)
CALL GETLAM(DENS, VISC,W,RATIO,LAMBDA)
LAMBDT = DSQRT(NFR) * LAMBDA
IF (ETYPE.EQ.RECT) THEN
CALL FRECT(ASPECT,LAMBDA,FLAM)
CALL FRECT(ASPECT,LAMBDT,FLAMT)
ELSE IF (ETYPE.EQ.CYL) THEN
CALL FCYL{LAMBDA,FLAM)
CALL FCYL(LAMBDT,FLAMT)
ELSE IF (ETYPE.EQ.SLIT) THEN
CALL FSLIT(LAMBDA FLAM)
CALL FSLIT(LAMBDT,FLAMT)
ELSE
STOP
ENDIF
CALL WNHEX(FLAMT,FLAM,W SSPEED,ZETA)
ZINT = DENS*W / (POROUS * FLAM * ZETA)
XI = GAMMA - (GAMMA-1.D0)*FLAMT
XI = 1.D0 + WFACT/ XI
ZETA =ZETA*XI
ZINT = ZINT /X1
ALPRIM = TOZ * (FLAMT / FLAM - 1.D0)/ (2.00 * T * (1.D0 - NPR))
RETURN
END

(22222 22 R R A 2 R R R N RS R 2 R R AR 222 R R 2R 22 R RS L R QTR0 ARt 2 2Rl

* SUBROUTINE ZPTRAN * DO THE IMPEDANCE TRANSLATION THEOREM **+*
* * DO ALSO THE PRESSURE TRANSLATION THEOREM *+**
* THIS VERSION IS FOR THE HEAT EXCHANGERS AND OPEN TUBE SECTIONS.
8RN RS R RS AERR SRR RN SRRR RN RN NEEIRESREVAEPDEEREESPIRERRNERERE RS RER RN
SUBROUTINE ZPTRAN(ZINT,SN,CS,Z,ZMD,P1,PIMD)
COMPLEX*16 Z,ZMD,ZINT,SN,CS,CT,P1,PIMD,FAC
CT-CS/SN
FAC =ZINT/Z
ZMD = ZINT * ( CT - (0.D0,1.D0)*FAC ) /
* (FAC*CT - (0.D0,1.D0) )
PIMD = P1 * (CS - (0.D0,1.D0) * FAC * SN)
RETURN
END

ECRFCRRPANRBSARER PR R RSP ORSRS NSRS S SRS RROR RN ARG RBNERe

* SUBROUTINE ZRIGID ** IMPEDANCE OF A RIGID TERMINATION.




[ EE SRR A ER RS R A R 2 AR R R A R A N R Y RN R R N Y R N R R P P F R RN N Y]
SUBROUTINE ZRIGID(DENS,SSPEED, VISC,W.2Z)
REAL*R DENS,SSPEED,VISC,NPR.GAMMA CP
COMPLEX*16 ZW,FAC
COMMON /PHYCON/ GAMMA NPR,CP
FAC = CDSQRT( DENS*SSPEED**2/ (W*VISC) )
Z = (1.D0,1.DOY*DENS*SSPEED*FAC*DSQRT(NPR)/(DSQRT(2.D0)*(GAMMA -
* 1.0D0))
RETURN
ENL
T T T T R T T PR TR T I I
* SUBROUTINE WNTUBE ** WAVENUMBERS FOR WAVES IN THE OPEN TUBE PARTS.
I Iy
SUBROUTINE WNTUBE(LAMBDA , W, SSPEED , K)
REAL*8 SSPEED,GAMMA NPR,LAMBDA,FAC1,CP
COMPLEX*16 KW
COMMON /PHYCON/ GAMMA,NPR,CP
FAC1 = ( 1.D0 + (GAMMA - 1.D0)/ DSQRT(NPR) ) / DSQRT(2.D0)
K = W/SSPEED * ( 1.D0 + (1.D0, 1.D0O) * FAC1/ LAMBDA )
RETURN
END
I
* SUBROUTINE FTUBE * COMPUTES F(LAMBDA) FOR THE RESONANT TUBE.
T T I
SUBROUTINE FTUBE(LAMBDA,FLAM)
COMPLEX*16 LAMBDA FLAM
FLAM = 1.D0 - (1.D0,1.D0) * DSQRT(2.0D0) / LAMBDA
RETURN
END
T T
* SUBROUTINE WNHEX ** WAVENUMBERS FOR WAVES IN THE HEAT EXCHANGERS.
T T I T
SUBROUTINE WNHEX(FLAMT , FLAM , W, SSPEED , K)
REAL*8 SSPEED,GAMMA,NPR,CP
COMPLEX*16 FLAMT,FLAM,K.W
COMMON /PHYCON/ GAMMA,NPR,CP
K = W/SSPEED * CDSQRT( (GAMMA - (GAMMA - 1.D0)*FLAMT)/ FLAM )
RETURN
END
P L L T T T T T T T P R T T T T P PR T TP
* SUBROUTINE VDCHE ** VISCOSITY, DENSITY, AND SOUND SPEED OF HELIUM

* AS A FUNCTION OF TEMPERATURE AND AMBIENT PRESSURE. ALSO THE THERMAL
* CONDUCTIVITY.

(23R R R IR R R R R R A R RS AR R R RS2 2 R R 222 R R R 2 R 0222 2]
SUBROUTINE VDCHE(TABS , PAMB, VISC, DENS, SSPEED,KGAS)
REAL*8 TABS,PAMB,VISC,DENS,SSPEED,GAMMA,NPR,CP,KGAS
COMMON /PHYCON/ GAMMA,NPR,CP
DENS = PAMB * 4.0D-3/( TABS * 8.3143D0)
* MY EXPRESSION FOR VISCOSITY.
VISC = 1.887D-5 * (TABS / 273.15D0)**0.6567D0
* MY EXPRESSION FOR THERMAL CONDUCTIVITY: NPR = CONSTANT.
KGAS = VISC * CP/NPR
* SWIFT'S EXPRESSION FOR VISCOSITY.
*  VISC = 5.131D-7 * TABS**.6441D0
* SWIFT'S EXPRESSION FOR THERMAL CONDUCTIVITY. NPR NOT CONSTANT.
* KGAS = 0.0044 * TABS**.6441D0
* NPR = VISC * CP/KGAS
SSPEED = 972.8D0 * DSQRT(TABS / 273.15D0)
RETURN
END

08208 ERERINE RO SRR ISR A AR R0 0P RN SRS RPSAS 2SR RRRRNRERERIR

¢ SUBROUTINE FSLIT *** COMPUTES F(LAMBDA) FOR PARALLEL SLITS.

ey e e R R P A R IR RS R L SRR AR 2R R A2 A Al Ad

SUBROUTINE FSLIT(LAMBDA , FLAM)




—

COMPLEX*16 LAMBDA FLAM.SQRMI,ARGUM,CTANHLAR
SQRMI = (1.000 , -1.0D0) / DSQRT( 2.0D0 )
AR = SQRMI * LAMBDA .
ARGUM = CDEXP(-AR)
AR = AR /2.D0
CTANH = (1.00 - ARGUM )/ ( 1.D0 + ARGUM )
FLAM = 1.0D0 - CTANH / AR
RETURN
END )
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* SUBROUTINE FCYL **** COMPUTES F(LAMBDA) FOR CYLINDRICAL PORES.
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SUBROUTINE FCYL{LAMBDA , FLAM)
COMPLEX* 16 FLAM,SQRI,CBS(2),J0,J1, ARGUM,LAMBDA
INTEGER N
N=2
SQRI = (1.0D0 , 1.0D0) / DSQRT( 2.0D0)
ARGUM = SQRI * LAMBDA
CALL DCBINS(ARGUM, N, CBS)
10 = CBS(1)
Ji = CBS(2)
FLAM = 1.0D0 - (2.0D0 * J1)/( ARGUM * J0)
RETURN
END
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* SUBROUTINE FRECT **** COMPUTES F(LAMBDA) FOR RECTANGULAR PORES.
* OPTIMIZED BY RANDY ZAGAR, 21 NOVEMBER 1991.
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SUBROUTINE FRECT(ASPECT, LAMBDA, FLAM)

REAL*8 PISQ, ASPECT, ASPSQ

REAL*8 XN, XM, FAC, TMN, TNM, TMM

REAL*8 TTERM, SSUM

INTEGER M, N, SUMMAX

COMPLEX*16 SUM, FLAM, YMN, YNM, YMM

COMPLEX*16 FAC1, LAMBDA, TERM

DATA  PISQ/9.869604404D0/

DATA  FAC/6.57022864D-1/

FAC1 = PISQ/(LAMBDA * (1.D0 + ASPECT))**2
FACIR = DREAL(FACI)

FACII = DIMAG(FACI)

ASPSQ = ASPECT * ASPECT
SUMMAX =51
SUM = (0.D0, 0.D0)

DO30M = 1, SUMMAX, 2
XM = DFLOAT(M)
XM = XM * XM

TMM = XM * (ASPSQ + 1.D0)
YMM = DCMPLX(1.D0 - FAC1I * TMM, FACIR * TMM)
SUM = SUM + 1.D0/(YMM * XM * XM)

DO40N = M+2, SUMMAX, 2
XN = DFLOAT(N)
XN =XN*XN

TMN = (ASPSQ * XM + XN)
YMN = DCMPLX(1.0D0 - FAC1I * TMN, FACIR * TMN)

TNM = (ASPSQ * XN + XM)
YNM = DCMPLX(1.0D0 - FAC11 * TNM, FACIR * TNM)




TERM = (1.DO/YMN + LDO/YNM) / (XM * XN)
TIERM = TERM * DCONJG(TERM)
SSUM = SUM * DCONJG(SUM)
c
* GUARANTEED ACCURACY FOR THE SUM TO EXPONENTZ2. E.G. SUM = SUM + ERROR
* WHERE 1.D-EXPONENT72 = ERROR/SUM. COMPARES ON THIS LEVEL OF ACCURACY
* WITH FRECTO.
IF (TTERM LT. (SSUM*1.0D-10)) GOTO 30
C
SUM = SUM + TERM
40  CONTINUE
30 CONTINUE
FLAM = SUM * FAC
RETURN
END
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* SUBROUTINE FRECTO **** COMPUTES F(LAMBDA) FOR RECTANGULAR PORES.
* OLD SLOWER VERSION.
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SUBROUTINE FRECTO(ASPECT , LAMBDA , FLAM)
REAL*8 PI,ASPECT,ASPSQ
REAL*8 FXN,XM,FAC
INTEGER M,N,SUMMAX
COMPLEX*16 SUM,FLAM,YMN,LAMBDA FACI
PI = 4.0D0 * DATAN(1.0D0)
FACI = P1 * PI/ (LAMBDA * ( 1.0D0 + ASPECT ) )**2
FAC = 64.0D0/ PI**4
ASPSQ = ASPECT * ASPECT
SUMMAX =51
SUM = (0.0D0, 0.0D0)
DO 30 M=SUMMAX, ,-2
XM = DFLOAT(M)
XM = XM*XM
DO 40 N=SUMMAX, 1,-2
XN = DFLOAT(N)
XN = XN*XN
YMN = 1.D0 + (0.D0,1.D0) * FAC1 * ( ASPSQ * XM + XN )
40 SUM « SUM + 1.0D0/( XM * XN * YMN)
30 CONTINUE
FLAM = SUM * FAC
RETURN
END
CEEEESEREFERPRBEPERC SISO LR RERRUOR000 0202200002 R IR RRBEEREDARES
* SUBROUTINE QUAFAC COMPUTES THE QUALITY FACTOR AND RESONANT FREQU.
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SUBROUTINE QUAFAC(AMP,FREQQ.RESFRE)
REAL*8 QRESFRE,AMP(2000),FREQ(2000), MAX AMP,FREHAF,AMPHAF
REAL*8 AMP2(2000),FREQ2(2000),XC(3),BL(3),BU(3),XSCALE(3)
REAL*8 XGUESS(3).FVALUE,FSCALE(3) RPARAM(7)
INTEGER JJRES JHALF,NUMDATJCOUNT,N,ISTART,IBTYPE,IPARAM(7)
COMMON /QCALC/ AMP2,FREQ2NUMDAT
EXTERNAL FUNCT!
Na3
IPARAM(1) = 0
IBTYPE=0
ISTART=0
MAXAMP = 0.D0
JCOUNT =0
DO 10 J=1,2000
IF (AMP(J) .GT. MAXAMP) THEN
MAXAMP=AMP(J)
RESFRE = FREQ(J)
JRES = J




ENDIF
10 CONTINUE
AMPHAF=MAX AMP/DSQRT(2.D0)
DO 20 J=1,2000
IF (AMP(J) .GT. AMPHAPF) THEN
FREHAF = (FREQ(J)+FREQ(-1))2.D0
Q = 0.5D0 * RESFRE / (RESFRE - FREHAF)
JHALF =]
GOTO 30
ENDIF
20 CONTINUE
30 DO 40 J=JHALF-1,JRES + (JRES-JHALF) + |
JCOUNT = JCOUNT + 1
AMP2(JCOUNT) = AMP(J)
40 FREQ2(JCOUNT) = FREQ(J)
NUMDAT = JCOUNT
XGUESS(1) = MAXAMP
XGUESS(2) = RESFRE
XGUESS() = Q
DO 501=1,3
XSCALE(J))=1.D0
FSCALE(J)=1.D0
BL(J) = XGUESS(J) * .5DO
50 BU(J) = XGUESS(J) * 2.D0
CALL DBCONF(FUNCTI, N, XGUESS,, IBTYPE, BL, BU,
XSCALE , FSCALE , IPARAM , RPARAM , XC . FVALUE)
. MAXAMP XC(1)
RESFRE = XC(2)
Q=XC(3)
RETURN

END
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SUBROUTINE FUNCTI(N, XC , RMSERR)

REAL*8 AMP(2000),FREQ(2000),XC(3),RMSERR,MAXSQ,F0,QF

INTEGER NUMDAT)

COMMON /QCALC/ AMPFREQ,NUMDAT

MAXSQ = XC(1)*XC(1)

FO = XC(2)

Q= XC(3)

RMSERR = 0.D0

DO 10J=1,NUMDAT

F = FREQ()

RMSERR = ( MAXSQ/ (1.D0 + (2.D0*Q*(F-FOYF0)**2 )

¢ . AMP(J)*AMP()))**2 + RMSERR
10 CONTINUE

RETURN

END
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SUBROUTINE GETLAM(DENS, VISC, W, R, LAMBDA)
REAL*8 DENS,VISC,R

COMPLEX*16 LAMBDA W

LAMBDA = R * CDSQRT( DENS * W/ VISC)

RETURN

END
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+ VERSION 3.0 FOR HELIUM BY PAT ARNOTT, 16 FEB 91 ##s¢ssessssnsssssss
* THIS VERSION USES RUNGE KUTTA SOLUTION FOR THE DE INSIDE OF THE STAK.
* TRANSLATION THEOREMS ARE USED IN OPEN TUBE AND HEAT EXCHANGERS.

* W THE RADIAN FREQUENCY IS ASSUMED COMPLEX EVERYWHERE.
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SUBROUTINE TAE(FMIN,FMAX NFREQ,FOEST)
COMPLEX®*16 W,LAMBDA,LAMBDT,FOFW,FPLUS SQRIKA
* GENERIC VARIABLES SUCH AS PHYSICAL PROPERTIES OF THE GAS.
REAL*8 SSPEED, VISC,CP.NPR,GAMMA KGAS.KSOLID,ARES
* Z DEPENDENT ARRAYS....
PARAMETER (N=5000)
REAL*8 DENS(N),TA VE(N),TOZ(N),POROUS(N),DSUB(N),ZCOOR(N),Q2(N),
© WAN)
COMPLEX*16 ALPHA(N),K(N),COMDEN(N),FLAM(N),FLAMT(N),Z(N),P1(N)
LOGICAL INSTAK(N)
* VARIABLES WHICH DEFINE THE TAE.
CHARACTER*70 SECTYP(100),ETYPE(100), TERMIN
INTEGER NUMLAY(100), NUMSEC,NUMFRE,PLOTN
REAL*8 DELEM(100),TRGH(100), TLEFT(100),RATIO(100),FRENEW
* ASPECT(100),POROS(100),
* THCOND(100), HECAP(100),PAMB,FREMIN,FREMAX,DDRIVE,PAMBTM
* DEFINE SOME GLOBAL VARIABLES.
REAL*8 PL,TWOPIFMIN,FMAX
INTEGER NFREQ
* EXTRA VARIABLES NECESSARY FOR RUNGE KUTTA EVALUATION OF THE PROBLEM.
COMPLEX*16 K1,K2,K3,K4,M1,M2,M3,M4,DPDZ,DZDZ, TFUN
COMPLEX*16 ZETA,ALPRIM,ZINT,AR,SN,CS
REAL*8 TNS,TNSM1,FOEST,LEQUIV,RGAS,LSUM,0OPL
INTEGER 1,J JUPJLOW,NUMTOT,NS
COMMON /PHYCON/ GAMMA ,NPR,CP
COMMON /VARS1/ SECTYP,ETYPE. TERMIN
COMMON /VARSY NUMLAY,NUMSEC,NUMFRE
COMMON /VARS3/ DELEM,TRGH, TLEFT,RATIO,
*  ASPECT,POROS THCOND,HECAP,PAMB,FREMIN,FREMAX,DDRIVE
COMMON /OUTPUT/ P1,Z,Q2,W2,ZCOOR,INSTAK
* ESTABLISH SOME OFTEN USED CONSTANTS.
PI = 4.D0 * DATAN(1.D0)
TWOPI = 2.D0 * P
NPR = 2.D0/3.D0
GAMMA = 5.00/3.D0
RGAS = 8.3143D0 * 1000.0D0 / 4.D0
CP = 2.5D0 * 8.3143D0/ 4.D-3
KSOLID = 0.16
SQRI = (1.D0,1.D0) / DSQRT(2.D0)
* GET DETAILS OF THETAE.
CALL SETVAL
ARES = P * RATIO(NUMSEC)**2
* ESTIMATE THE RESONANT FREQUENCY FROM THE LENGTH AND SOUND SPEED DIST.
LSUM=0.D0
OPL =00
DO 1 J=1,NUMSEC
LEQUIV = DELEM(J) * POROS())
* LEQUIV = DELEM())
LSUM = LSUM + LEQUIV
SSPEED=DSQRT(GAMMA *RGAS*TLEFT(J))*(3.D0+TRGH(J)/TLEFT(})\4.D0
1 OPL = OPL + SSPEED*LEQUIV
FOEST = OPL / (2.D0 * LSUM**2)
* COUNT THE NUMBER OF BINS USED......
NUMTOT = 0
DO 10 J=1,NUMSEC
10 NUMTOT = NUMTOT + NUMLAY()
NUMTOT = NUMTOT + |
FMIN = FREMIN
FMAX = FREMAX
NFREQ = NUMFRE
RETURN
*  AMBIENT PRESSURE VARIATION IS HARDWIRED IN HERE.
ENTRY TAE(W,FOFW,FPLUS,PAMBTM)

- s T




PAMB - PAMBTM
* GET THE SPECIFIC ACOUSTIC IMPEDANCE AND PRESSURE AT ALL POINTS.
* START AT THE RIGHT AND MOVE TO THE LEFT.
IF (TERMIN .EQ. RIGID') THEN
CALL VDCHE(TRGH(NUMSEC),PAMB, VISC, DENS(NUMTOT),SSPEED,KGAS)
CALL ZRIGID(DENS(NUMTOT),SSPEED, VISC,W Z(NUMTOT))
ELSE IF (TERMIN EQ. 'FREE") THEN
CALL VDCHE(TRGH(NUMSEC),PAMB, VISC,DENS(NUMTOT),SSPEED,KGAS)
CALL GETLAM(DENS(NUMTOT), VISC,W RATIO(NUMSEC),LAMBDA)
CALL WNTUBE(LAMBDA W SSPEED K(NUMTOT))
KA = K(NUMTOT) * RATIO(NUMSEC)
Z(NUMTOT) = SSPEED*DENS(NUMTOT)*KA*(KA/4.D0 - (0.0D0,0.6D0))
ELSE IF (TERMIN .EQ. INFIN) THEN
CALL VDCHE(TRGH(NUMSEC),PAMB, VISC,DENS(NUMTOT),SSPEED,KGAS)
CALL GETLAM(DENS(NUMTOT),VISC,W,RATIO(NUMSEC),LAMBDA)
CALL FTUBE(LAMBDA FLAM(NUMTOT))
CALL WNTUBE(LAMBDA,W,SSPEED,K(NUMTQT))
Z(NUMTOT) = DENS(NUMTOT) * W / (FLAM(NUMTOT) * K(NUMTOT))

PI(NUMTOT) = 1.D0
* APPLY THE IMPEDANCE AND PRESSURE TRANSLATION THEOREMS EVERYWHERE.
* WORK FROM RIGHT TO LEFT.
DO 40 [=NUMSEC, 1,-1
JUP=0
DO 50 J=I+1,NUMSEC
50 JUP = JUP + NUMLAY()
JUP = NUMTOT -JUP - 1
JLOW = JUP - NUMLAY(D) + 1
DSUB(JUP) = DELEM(1)/ NUMLAY(T)
POROUS(JUP) = POROS(])
* IMPEDANCE TRANSLATE FOR THE OPEN TUBE OR HEAT EXCHANGER SECTIONS.
IF (SECTYP().EQ.OPENTU' .OR. SECTYP(I).EQ 'HEXCH') THEN
CALL VDCHE(TRGH(I),PAMB, VISC,DENS(JUP) SSPEED,KGAS)
TAVE(JUP) = TRGH(I)
TOZ(JUP) = 0.0D0
ALPHA(JUP) = (0.D0,0.D0)
CALL GETLAM(DENS(JUP), VISC,W,RATIO(I) LAMBDA)
LAMBDT = DSQRT(NPR) * LAMBDA
IF (SECTYP(1).EQ.OPENTU") THEN
CALL FTUBE(LAMBDA ,FLAM(JUP))
CALL FTUBE(LAMBDT,FLAMT(JUP))
CALL WNTUBE(LAMBDA,W,SSPEED K(JUP))
+  CALLFCYL(LAMBDA FLAM(JUP))
*  CALL FCYL(LAMBDT,FLAMT(JUP))
*  CALL WNHEX(FLAMT(JUP),FLAM(JUP),W,SSPEED K(JUP))
* OTHERWISE, THE TUBE SECTION IS A HEAT EXCHANGER. FIND ITS GEOMETRY.
ELSE IF (SECTYP().EQ HEXCH) THEN
[F (ETYPE(T).EQ.RECT) THEN
CALL FRECT(ASPECT(1),LAMBDA FLAM(JUP))
CALL FRECT(ASPECT(I),LAMBDT,FLAMT(JUP))
ELSE IF (ETYPE(T).EQ.CYL) THEN
CALL FCYL(LAMBDA,FLAM(JUP))
CALL FCYL(LAMBDT,FLAMT(JUP))
ELSE IF (ETYPE(T).EQ/SLIT) THEN
CALL FSLIT(LAMBDA,FLAM(JUP))
CALL FSLIT(LAMBDT,FLAMT(UP))
ELSE
STOP
» AN ERROR ON THE INPUT OF ETYPE(T) HAS OCCURED.
ENDIF
CALL WNHEX(FLAMT(JUP),FLAM(JUP),W,SSPEED,K(JUP))
END IF




} COMDEN(JUP)=DENS(UPYFLAM(JUP)
ZINT = COMDEN(IUP) * W/ { K(JUP) * POROUS(JUP) )
AR = K(JUP) * DSUB(UP)
SN = CDSIN(AR)
r CS = CDCOS(AR)
DO 60 J=JUP,JLOW,-1
INSTAK(J)=.FALSE.
DENS(§)=DENSUUP)
TAVE())=TAVE(UP)
T0Z(J) = TOZ(JUP)
POROUS(1)=POROUS(JUP)
ALPHA(J) = ALPHA(JUP)
FLAM(J) = FLAM(JUP)
FLAMT(J) = FLAMTUUP)
K(J) = K(UP)
COMDEN(J) = COMDEN(JUP)
DSUB(J) = DSUB(JUP)
J CALL ZPTRAN(ZINT,SN,CS.Z(+1).Z(J),P10+1).P1(J))
60 CONTINUE
ELSE IF (SECTYP(1).EQ.STACK") THEN
* IMPEDANCE TRANSLATE FOR THE STACK SECTIONS.
TOZ(JUP)=(TRGH(I) - TLEFT(I))  DELEM(Q)
NS=0
DO 70 J=JUP,JLOW,-1
INSTAK(J)=.TRUE.
NS=NS+1
TNS = TRGH(I) - (TRGH(I) - TLEFT(I)) * DFLOAT(NS)
. / DFLOAT(NUMLAY(I))
TNSM1 = TRGH(I) - (TRGH(I) - TLEFT(I)) * DFLOAT(NS-1)
. / DELOAT(NUMLAY())
TAVE() = (TNS + TNSM1)/ 2.D0
POROUS(J) = POROUS(JUP)
DSUB(J) = DSUB(JUP)
T0Z(J) = TOZ(UP)
* START THE RUNGE-KUTTA
CALL STAKPM(ETYPE(I),W,POKOUS(J), PAMB, TNSM1,T0Z(J),DENS(J),
2 RATIO(I), ASPECT(I),FLAM()),FLAMT(}).ZETA, ALPRIM ZINT)
CALL DERIVS(ZETA,ZINT,ALPRIM,P1(J+1).Z(J+1),DPDZ.DZDZ)
K1 = -DSUB(J)*DPDZ
M1 = -DSUB(J)*DZDZ
P1(J) = P1(J+1) + K1/2.D0
Z(J) =Z(+1)+M12.D0
CALL STAKPM(ETYPE(I),W,POROUS(J),PAMB TAVE(J).TOZ(J),DENS()),
2 RATIO(I),ASPECT(I),FLAM(J),FLAMT()).ZETA, ALPRIM ZINT)
CALL DERIVS(ZETA ZINT,ALPRIM,P1()),Z(}),DPDZ,DZDZ)
K2 = -DSUB(J)*DPDZ
M2 = -DSUB(J)*DZDZ
P1(J) = P1(J+1) + K272.D0
Z() =Z(+1)+ M22.D0
CALL DERIVS(ZETA,ZINT,ALPRIM,P1(}),2(J),DPDZ,DZDZ)
K3 = -DSUB())*DPDZ
M3 = -DSUB(J)*DZDZ
P1(J) = P1(J+1) + K3
‘ ZJ) =Z(0+1)+M3
CALL STAKPM(ETYPE(I),W,POROUS(J), PAMB,TNS,T0Z(J), DENS(J),
2 RATIO(I),ASPECT(I),FLAM()),FLAMT(J).ZETA,ALPRIM,ZINT)
CALL DERIVS(ZETA,ZINT,ALPRIM,P1(J),Z(J),DPDZ,DZDZ)
K4 = -DSUB(J)*DPDZ
M4 = -DSUB(J)*DZDZ
P1(J) = P1(J+1) + (K1+2.D0*K2+2.D0*K3+K4)/6.D0
Z(J) = Z(J+1) + (M1+2.D0*M2+2.D0*M3+M4)/6.D0
COMDEN(J)=DENS(JyFLAM(J)
ALPHA()) = ALPRIM
70 CONTINUE




ELSE
* AN ERROR ON INPUT OF SECTYP HAS OCCURED.

sroep

ENDIF
40 CONTINUE
* THE IMPEDANCE IS NOW KNOWN AT ALL SPOTS IN THE TAE.
* GET THE ACOUSTIC PRESSURE, ZCOOR, WORK AND HEAT FLUXES.
*  ZCOOR(1)=0.0D0

IF (TERMIN.EQ.'INFIN) THEN

TFUN = 1.D0/P1(1)

ELSE
TFUN = (0.D0,-1.D0) * W * Z(1) * DDRIVE/ PI(1)
ENDIF ! TERMIN.EQ.INFIN' CONDITIONAL.

P1(1) = TFUN * P1(1)
*  CALL WFLOW(PI(1),Z(1),W2(1))
DO 80 J=1,NUMTOT-1
P1(J+1) = P1(J+1) * TFUN
ZCOOR(J+1) = ZCOOR(J) + DSUB(J)
CALL WELOW(P1(J+1)Z(J+1),W2(J+1))
CALL QFLOW(POROUS(),P1().Z(1).FLAMU),FLAMT(),W,
DENS(J)),T0Z(}),KGAS,KSOLID,Q2(J))
CONTINUE
J = NUMTOT-1
CALL QFLOW(POROUS(I),P1(J+1),Z(J+1),FLAM(J),FLAMT(), W,
*  DENS(),T0Z())KGAS,KSOLID,Q2(NUMTOT))
DO 81 J=1,NUMTOT
Q2()) = Q2(J) * ARES
*81  W2(J) = W2(J) * ARES
» THE SIGN OF Z(1) WAS CHANGED ON 8-12-91. THE IMPEDANCE LOOKING TO
* THE RIGHT HAS TO BE EQUAL TO MINUS THE IMPEDANCE LOOKING TO THE LEFT
* AND THE MINUS SIGN COMES FROM THE DIRECTION OF PARTICLE VELOCITY.
FOFW = SQRI * CDSQRT(DENS(1)**3 * SSPEED**4 * NPR / (W*VISC) )/
*  (GAMMA - 1.D0) + Z(1)
FPLUS = FOFW - 2.D0 * Z(1)
RETURN
END
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* SUBROUTINE CHANGE. USED TO INSERT A NUMBER INTO A LINE OF A
* SEQUENTIAL FILE.
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SUBROUTINE CHANGE(FNUM,LNUM,TO)
INTEGER FNUM,LNUMJ
CHARACTER*80 LINE
1 FORMAT(A80)
REAL*8 TO
OPEN(3,FILE='SCRATCH"
REWIND(3)
REWIND(FNUM)
DO 10 J=1,5000
READ(FNUM, 1,END=20) LINE
IF (J NELNUM) THEN
WRITE(3,1) LINE
ELSE
WRITE(3,*) TO
ENDIF
10 CONTINUE
20 ENDFILE3
REWIND(3)
REWIND(FNUM)
DO 30 J=1,5000
READ(3,1,END=40) LINE
30 WRITE(FNUM,1) LINE
40 ENDFILE FNUM
REWIND(3)
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REWIND(FNUM)
RETURN
END
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* PROGRAM : EVALUATE TAE FOR A RANGE OF PARAMETERS.
* VERSION EXPLICITELY FOR THE UMTAE.
* PAT ARNOTT, 22 MARCH 1991, MOD 11-15-91.
* DETERMINES THE STABILITY CURVE FOR THE FIRST TWO MODES AS A FUNCTION
* OF THE AMBIENT PRESSURE. INCLUDES FINITE WALL POROSITY IN THE STACK.
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PROGRAM UMTAE2
* VARIABLES USED TO GET THE Q.
REAL*8 AMPLIT(2000),FREQU(2000),QUAL,RESFRE,RESOLD,QOLD
REAL*8 QOLD2,TOLD2,RSOLD2,TOLD
* VARIABLES RETURNED FROM TAE.
REAL*8 FREMIN,FREMAX,FOEST
INTEGER NUMFRE
* LOCAL VARIABLES TO THE MAINLINE.................
REAL*8 PAMB,PMIN,PMAX, TMIN
REAL*8 TRGH,TONSET,PI, TWOPI,TEST, TESTF,TNOLD,TNOLD2
INTEGER ITRGH,PLOTN,IFREQ,NTIMES,NPAMBS,NPRESS,MODE
COMPLEX* 16 W,WNEW,FOFW,DFOFW,FOFWPE,WPEW,EPSIL
COMPLEX*16 FPLUS, DUMB,WMEW,FOFWME, WCORR, WSTART
* DEFINE THE VARIABLE FOR THE OUTPUT COMMON BLOCK.
PARAMETER (N=5000)
REAL*8 Q2(N),W2(N)ZCOOR(N)
COMPLEX*16 Z(N),PI(N)
LOGICAL INSTAK(N)
COMMON /OUTPUT/ P1,Z,Q2,W2,ZCOOR,INSTAK
* PRELIMINARIES.
Pl = 4.D0 * DATAN(1.D0)
TWOPI = 2.D0 * Pl
* SET UP THE AMBIENT PRESSURE LOOF.........
PMIN = 2.00D5
PMAX = 8.0DS
PMIN = DSQRT(PMIN)
PMAX = DSQRT(PMAX)
NPAMBS=16
+ SET UP THE MODE LOOP...........co...
DO 18 MODE=2,2
IF (MODE.EQ.2) THEN
TMIN = 603.D0
ELSE
TMIN = 403.D0
ENDIF
DO 17 NPRESS=14,NPAMBS
WCORR = (3151.633184D0,-67.8178943D0)/(3152.921237D0,-66.734D0)
PLOTN =0
QUAL=30.D0
PAMB = PMIN + (PMAX-PMIN) * DFLOAT(NPRESS) / DFLOAT(NPAMBS)
PAMB = PAMB*PAMB
* HOP ON THE TEMPERATURE CALCULATIONS.....
DO 10 ITRGH=INT(TMIN),1593,20
EPSIL = 1.D-8
NTIMES=0
TRGH = DFLOAT(ITRGH)
CALL CHANGE(2,28,TRGH)
CALL CHANGE(2,31,TRGH)
CALL CHANGE(2,56,TRGH)
CALL CHANGE(2,59,TRGH)
CALL CHANGE(2,84,TRGH)
PLOTN = PLOTN + 1
CALL TAE(FREMIN,FREMAX,NUMFRE,FOEST)
FOEST = FOEST*DFLOAT(MODE)




WRITE (*,111) FOEST
1 FORMAT( RESONANT FREQUENCY ESTIMATE FROM OPL"§9.3)
* IF (PLOTN.NE.1) FREMIN = RESFRE*(1.D0 - 0.5D0 / QUAL)
* START THE COMPLEX EIGENFREQUENCY ALGORITHM WITH THE DRIVEN SYSTEM (.
IF ((QUAL.LT.200.D0).AND.((QUAL.GT.0.D0). AND.(PLOTN.L'T.7))) THEN
DO 100 IFREQ=1,NUMFRE
IF (NUMFRE.EQ.1) THEN
FREQ = FREMIN
ELSE
FREQ = FREMIN + (FREMAX-FREMIN)* DFLOAT(IFREQYDFLOAT(NUMFRE-1)
ENDIF
FREQ=FREQ*DFLOAT(MODE)
W = TWOPI * FREQ
CALL TAEI(W,FOFW FPLUS,PAMB)
AMPLIT(IFREQ)=CDABS(P1(1))
100 FREQU(IFREQ) = FREQ
* GET THE Q AND RESONANT FREQUENCY USING THE CONSTANT AMPLIT DRIVER
+ RESPONSE.
CALL QUAFAC(AMPLIT,FREQU,QUAL.RESFRE)
WRITE (29,1010) RESFRE,QUAL, TRGH-293.D0
WRITE (27,*) TRGH-293.D0,1.D0/QUAL
WRITE (28,*) TRGH-293.DO,RESFRE
WRITE (*,1010) RESFRE,QUAL, TRGH-293.D0
1010 FORMAT( ROTE: RES FREQ="F9.3, Q=".F9.3, DELTAT='F9.3, K')
ELSE !LINEARLY INTERPOLATE TO GET A START FOR QUAL AND RESFRE.
* JQUAL AND RESFRE ARE ASSUMED TO BE LINEAR IN DELTAT.
- QUAL=1.DVQOLD+(QOLD-QOLD2)*(TRGH-TOLD)/(TOLD2-TOLD)*QOLD2*QOLD)
QUAL = 1.D0/ QUAL
RESFRE= RESOLD + (RSOLD2-RESOLD)*TRGH-TOLD)V(TOLD2-TOLD)
END IF ! THIS ENDS THE INITIAL SEARCH FOR A START Q AND RESFRE.
*+ NOW GET THE COMPLEX EIGENFREQUENCY FOR COMPARISON.
* INITIAL GUESS FOR THE NEWTON'S TECHNIQUE OF ROOT DETERMINATION,
W = TWOPI * RESFRE * (1.D0 - (0.D0,0.5DOYQUAL)
WSTART =W
IF ((MODE.EQ.2).AND.(PLOTN.NE.1)).OR.(MODE.EQ.1)) W = W * WCORR
WRITE (*,*) DREAL(W)/TWOPI,-DREAL(W)/(2.D0*DIMAG(W))
110 CALL TAE1(W,FOFW,FPLUS,PAMB)
NTIMES=NTIMES+1
WPEW = W * (1.D0 + EPSIL)
WMEW = W * (1.D0 - EPSIL)
CALL TAE1(WPEW,FOFWPE,DUMB,PAMB)
CALL TAEI(WMEW,FOFWME,DUMB,PAMB)
DFOFW = (FOFWPE - FOFWME) / (2.D0 * EPSIL)
WNEW = W - 100.D0 * FOFW / DFOFW
EPSIL = (WNEW - W)*2.D-4/(WNEW4+W)
* TEST = CDABS((WNEW-WY(WNEW+W))
TESTF = CDABS(FOFW/FPLUS)
* IF ((TEST .GT. 1.D4) .OR. (TESTF .GT. 1.D4)) THEN
IF (TESTF .GT. 1.D-5) THEN
W = WNEW
GOTO 110
ELSE ! COMPLEX EIGENFREQUENCY HAS BEEN FOUND.
W = (W + WNEW)/2.D0
WCORR = W/ WSTART
WRITE (*,*) NTIMES
WRITE (*,*) FOFW
ENDIF t TEST.GT. OR TESTF.GT CONDITIONAL.
* GET THE Q AND RESGNANT FREQUENCY.
RESFRE = DREAL(W) / TWOPI
QUAL = -DREAL(WY(2.D0 * DIMAG(W))
WRITE (39,1011) RESFRE,QUAL,TRGH-293.D0,PAMB
WRITE (37,*) TRGH-293.D0,1.DO/QUAL
WRITE (38,*) TRGH-293.D0,RESFRE
WRITE (*,1011) RESFRE,QUAL, TRGH-293.D0,PAMB
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1011 FORMAT( EIG: FO',F9.3, Q'F9.3, DT".§9.3, K'' PAMB.F10.2)
* DETERMINE IF ONSET HAS BEEN ACHIEVED: IF SO, GET DT AND RESFRE, NEXTP
IF (PLOTN .EQ. 1) THEN
RESOLD = RESFRE
QOLD =QUAL
TOLD =TRGH
ELSE
IF (QOLD*QUAL .LT. 0.D0) THEN
. INTERPOLATE TO GET THE ONSET DEI.TAT.
TONSET = TOLD + (TRGH - TOLDY(1.D0 - QOLD/QUAL)
WRITE (44,*) PAMB,TONSET-293.D0,MODE
WRITE (*,1117) PAMB, TONSET-293.D0,MODE
1117 FORMAT( AMBIENT PRES ‘,F10.2, ONSET DELTAT',F9.3, MODE',13)
GOTO 17
ELSE  !RESET OLD PARAMETERS TO NEW PARAMETERS.
RSOLD? = RESOLD
QOLD2 = QOLD
TOLD2 =TOLD
RESOLD = RESFRE
QOLD =QUAL
TOLD =TRGH
ENDIF t ONSET CONDITIONAL.
ENDIF ! PLOTN EQ. 1
10 CONTINUE ! TEMPERATURE LOOP INCREMENT
TNOLD2-TNOLD
TNOLD-TONSET
17 CONTINUE ! PRESSURE LOOP INCREMENT
18 CONTINUE ' MODE LOOP INCREMENT

END
P MAINLINE USED TO COMPUTE THE RESONANT FREQUENCY AND
QUALITY FACTOR CURVES.

XA RS RERR PR BB PR LSRR RGN SRR IR LA NERRBRR R DRESSREESe R R R R ANk
* PROGRAM : EVALUATE TAE FOR A RANGE OF PARAMETERS.
* VERSION EXPLICITELY FOR THE UMTAE.
* PAT ARNOTT, 22 MARCH 1991, MOD 11-15-91.
* DETERMINES THE STABILITY CURVE FOR THE FIRST TWO MODES AS A FUNCTION
* OF THE AMBIENT PRESSURE. INCLUDES FINITE WALL POROSITY IN THE STACK.
* PROGRAM USED TO DETERMINE THE Q AND RESFRE OF THE UMTAE VS TEMPERATURE
(AR XA R SRS R R R R R R R 2 R R 2 2 R R 2 R 2222 SR RS2 R 222 R R 2R 2 )] 2
PROGRAM UMTAE2
* VARIABLES USED TO GET THE Q.
REAL*8 AMPLIT(2000),FREQU(2000),QUAL,RESFRE,RESOLD,QOLD
REAL*8 QOLD2,TOLD2,RSOLD2,TOLD
* VARIABLES RETURNED FROM TAE.
REAL*8 FREMIN,FREMAX,FOEST
INTEGER NUMFRE
* LOCAL VARIABLES TO THE MAINLINE.................
REAL*8 PAMB,PMIN,PMAX,TMIN
REAL*8 TRGH,TONSET,PI,TWOPLTEST,TESTF,TNOLD,TNOLD2
INTEGER ITRGH,PLOTN JFREQ,NTIMES NPAMBS ,NPRESS, MODE
COMPLEX*16 W ,WNEW,FOFW,DFOFW,FOFWPE,WPEW EPSIL
COMPLEX*16 FPLUS,DUMB,WMEW,FOFWME,WCORR,WSTART
* DEFINE THE VARIABLE FOR THE OUTPUT COMMON BLOCK.
PARAMETER (N=5000)
REAL*8 Q2(N),W2(N),ZCOOR(N)
COMPLEX*16 Z(N),P1(N)
LOGICAL INSTAK(N)
COMMON /OUTPUT/ P1,Z,Q2,W2,ZCOOR,INSTAK
* PRELIMINARIES.
Pl =4.D0 * DATAN(1.D0)
TWOPI = 2.D0 * Pl
* SET UP THE AMBIENT PRESSURE LOOP.........
PMIN = 1.73DS
PMAX = 1.73D5




TMIN = 293.D0
NPAMBS-= 1
* SET UP THE MODE LOOP.......ooe....
DO 18 MODE=2,2
DO 17 NPRESS=1,NPAMBS
WCORR = (3151.633184D0,-67.8178943D0)/(3152.921237D0,-66.734D0)
PLOIN =0
QUAL=30.D0
PAMB = PMIN + (PMAX-PMIN) * DELOAT(NPRESS) / DFLOAT(NPAMBS)
* HOP ON THE TEMPERATURE CALCULATIONS.......
DO 10 ITRGH=INT(TMIN),1593,20
EPSIL = 1.D-8
NTIMES=0
TRGH = DFLOATATRGH)
CALL CHANGE(2,28, TRGH)
CALL CHANGE(2,31,TRGH)
CALL CHANGE(2,56, TRGH)
CALL CHANGE(2,59,TRGH)
CALL CHANGE(2,84, TRGH)
PLOTN = PLOTN + 1
CALL TAE(FREMIN,FREMAX,NUMFRE,FOEST)
FOEST = FOEST*DFLOAT(MODE)
WRITE (*,111) FOEST
111  FORMAT( RESONANT FREQUENCY ESTIMATE FROM OPL 'F9.3)
*  IF (PLOTN.NE.1) FREMIN = RESFRE*(1.D0 - 0.5D0/ QUAL)
* START THE COMPLEX EIGENFREQUENCY ALGORITHM WITH THE DRIVEN SYSTEM Q.
IF ((QUAL.LT.200.D0).AND.(QUAL.GT.0.D0)) THEN
DO 100 IFREQ=1,NUMFRE
IF (NUMFRE.EQ.1) THEN
FREQ = FREMIN
ELSE
FREQ = FREMIN + (FREMAX-FREMIN)*DFLOAT(IFREQYDFLOAT(NUMFRE-1)
ENDIF
FREQ=FREQ*DFLOAT(MODE)
W = TWOPI * FREQ
CALL TAE1(W,FOFW,FPLUS,PAMB)
AMPLIT(IFREQ)=CDABS(P1(1))
100 FREQU(IFREQ) = FREQ
+ GET THE Q AND RESONANT FREQUENCY USING THE CONSTANT AMPLIT DRIVER
* RESPONSE.
CALL QUAFAC(AMPLIT,FREQU,QUAL,RESFRE)
WRITE (29,1010) RESFRE,QUAL,TRGH-293.D0
WRITE (27,*) TRGH-293.D0,1.DO/QUAL,MODE
WRITE (28,*) TRGH-293.D0O,RESFRE,MODE
WRITE (*,1010) RESFRE,QUAL,TRGH-293.D0
1010 FORMAT( ROTE: RES FREQ-=",F9.3,’ Q=',F9.3, DELTAT="F9.3, K)
ELSE ! LINEARLY INTERPOLATE TO GET A START FOR QUAL AND RESFRE.
* I/QUAL AND RESFRE ARE ASSUMED TO BE LINEAR IN DELTAT.
QUAL=1.D/QOLD4+(QOLD-QOLD2)*(TRGH-TOLD)/((TOLD2-TOLD)*QOLD2*QOLD)
QUAL = 1.D0/QUAL
RESFRE= RESOLD + (RSOLD2-RESOLD)*(TRGH-TOLDY(TOLD2-TOLD)
END IF ! THIS ENDS THE INITIAL SEARCH FOR A START Q AND RESFRE.
* NOW GET THE COMPLEX EIGENFREQUENCY FOR COMPARISON.
* INITIAL GUESS FOR THE NEWTON'S TECHNIQUE OF ROOT DETERMINATION.
IF (MODE.EQ.2). AND.((QUAL.GT.100.D0).OR.(QUAL.LT.0.D0)))
* THEN ! THE ROUTINE IS OK FOR THE HIGHER MODE..... GO AHEAD
W = TWOPI * RESFRE * (1.D0 - (0.D0,0.5D0YQUAL)
WSTART = W -
IF ((MODE.EQ.2).AND.(PLOTN.NE.1)).OR (MODE.EQ.1)) W = W * WCORR
WRITE (*,*) DREAL(W)/TWOPI,-DREAL(W)/(2.D0*DIMAG(W))
110 CALL TAEI(W,FOFW,FPLUS,PAMB)
NTIMES=NTIMES+1
WPEW = W * (1.D0 + EPSIL)
WMEW = W * (1.D0 - EPSIL)




CALL TAEL(WPEW,FOFWPE,DUMB,PAMB)
CALL TAEI(WMEW , FOFWME,DUMB, PAMB)
DFOFW = (FOFWPE - FOFWME) / (2.D0 * EPSIL)
WNEW = W - 100.D0 * FOFW / DFOFW
EPSIL = (WNEW - W)*2.D-4/(WNEW+W)
* PEST = CDABS(WNEW-WY(WNEW+W))
TESTF = CDABS(FOFW/FPLUS)
* [F((TEST .GT. 1.D-4) .OR. (TESTF GT. 1.D-4)) THEN
IF (FESTF .GT. 1.D-5) THEN
W = WNEW
GOTO 110
ELSE ! COMPLEX EIGENFREQUENCY HAS BEEN FOUND.
W = (W + WNEW)/2.D0
WCORR = W/ WSTART
WRITE (*,*) NTIMES
WRITE (*,*) FOFW
ENDIF t TEST.GT. OR TESTF.GT CONDITIONAL.
* GET THE Q AND RESONANT FREQUENCY.
RESFRE = DREAL(W)/ TWOPI
QUAL = -DREAL(W)/(2.D0 * DIMAG(W))
WRITE (39,101 1) RESFRE,QUAL, TRGH-293.D0,PAMB
WRITE (37,*) TRGH-293.D0,1.D0/QUAL,MODE
WRITE (38,*) TRGH-293.D0,RESFRE,MODE
WRITE (*,1011) RESFRE,QUAL, TRGH-293.D0,PAMB
1011 FORMAT( EIG: F0',F9.3,' Q,F9.3, DT"F9.3, K',' PAMB' F10.2)
* DETERMINE IF ONSET HAS BEEN ACHIEVED: IF SO, GET DT AND RESFRE, NEXTP
IF (PLOTN .EQ. 1) THEN
RESOLD = RESFRE
QOLD =QUAL
TOLD =TRGH
ELSE
IF (QOLD*QUAL .LT. 0.D0) THEN
INTERPOLATE TO GET THE ONSET DELTA T.
TONSET = TOLD + (TRGH - TOLD)/(1.D0 - QOLD/QUAL)
WRITE (44,*) PAMB,TONSET-293.D0,MODE
WRITE (*,1117) PAMB,TONSET-293.D0,MODE
*1117 FORMAT( AMBIENT PRES 'F10.2,' ONSET DELTATF9.3, MODE',I3)
. GOTO 17
. ELSE ! RESET OLD PARAMETERS TO NEW PARAMETERS.
RSOLD2 = RESOLD
QOLD2 =QOLD
TOLD2 =TOLD
RESOLD = RESFRE
QOLD =QUAL
TOLD =TRGH
* ENDIF 1 ONSET CONDITIONAL.
ENDIF ! PLOTN EQ. 1
ENDIF ! CONDITIONAL ON MODE.EQ.2 AND Q>100.
10 CONTINUE ! TEMPERATURE LOOP INCREMENT
TNOLD2-TNOLD
TNOLD=TONSET
17 CONTINUE ! PRESSURE LOOP INCREMENT
18 CONTINUE ! MODE LOOP INCREMENT
END

* # > * ®
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Abstract

Following the onset of self oscillation in a thermoacoustic prime mover a periodic signal
with an acoustic overpressure of 1-8 % of ambient pressure (3 atm of Helium) is observed.
The waveform adopts a non-sinusoidal shape which is assumed to be the result of non-
linear propagation. There are, however, other possible sources of this nonlinearity which
must be examined in the future. These include a varying cold end temperature when
displaced amplitudes approach the depth of the heat exchangers and effects of the large
amplitude acoustic signal on the assumed linear variation of temperature within the
thermoacoustic stack.

Introduction

Thermoacoustic prime movers convert stored thermal energy into useful work in the form
of sound. Referring to Figure 1, a typical prime mover configuration consists of a stack of
plates, called the prime mover stack (or simply, the stack), which is in thermal contact with
two heat exchangers. For the work reported here, one end of the prime mover stack was
held at elevated temperatures while the other end was held at ambient (room) temperature.
However, the important quantty is the temperature difference across the prime mover
~ stack, not the absolute temperatures of either end. The prime mover stack and heat
exchangers are housed within an acoustic resonator. The prime mover stack/heat
exchanger/resonator assembly is called a (thermoacoustic) prime mover.

Thermal energy is stored in the prime mover by imposing a temperature difference
across the stack, the two quantities being proportional. In order for the prime mover to
produce net positive work, i.c. to produce audible sound, the amount of stored energy
converted to sound must exceed the amount of acoustic energy dissipated by losses in the
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prime mover. The dominant loss mechanism for the type of gases and frequencies of
interest here are thermal and viscous losses at the resonator walls and the stack and heat
exchanger surfaces. The prime mover is said to have reached "onset” when the temperature
difference across the stack is sufficient for the prime mover to generate and sustain
detectable levels of sound. The use of the word “detectable” is not meant to imply that
onset is a subtle question of detection thresholds. When onset is reached, the observer
(and everyone else in the room) knows it.

Transducer Heat Stack
Exchanger
Hot End
]
8797 cm - =1 *
\Heat

Exchanger
Figure 1. Prime Mover

Once onset of self oscillation is reached, the acoustic amplitude in the tube
immediately assumes a large value, typically about 1% of the ambient pressure. The
observed waveform is noticeably non-sinusoidal. As more energy is supplied to the hot
end of the stack, the temperature of that end increases only slightly while the acoustic
amplitude in the tube increases rapidly. Since we are interested in efficient conversion of
heat into sound, this is a very favorable operating regime. Unfortunately, as the acoustic
amplitude increases, an increasing fraction of the acoustic energy appears as higher
harmonics - harmonic distortion increases. It is this increase in non-linear generation of
harmonics that will be the subject of this paper.

Experimental System

The resonance tube is made from a 88.1 cm long,3.82 cm ID copper tube connected to an
ambient heat exchanger, stainless steel prime mover stack, and nickel hot end. The hot end
consists of 2 5.00 cm long, 3.82 cm ID nickel tube and a heat exchanger. One end of the
tube is capped and accommodates a type K: thermocouple probe used to sense the hot heat
exchanger temperature. The hot heat exchanger consisting of 25, 0.051 cm thick, 0.762
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cm long nickel plates. The gap between each pair of adjacent plates is 0.102 cm.

The prime mover stack consists of 35, 0.25 cm thick, 3.42 cm long 304 stainless
steel plates spaced by 0.079 cm and is housed within a thin walled stainless steel ube. A
temperature gradient is established across this stack to supply the required heat flux.

The ambient heat exchanger is employed to maintain one end of the stack at a constant
ambient temperature. The construction of this heat exchanger is very similar to the hot heat
exchanger, except it has a length of 1.02 cm and contains 25 copper plates. The ambient
heat exchanger actually consists of two such stacks separated by a 0.15 cm gap.

Control of the temperature gradient across the prime mover stack is achieved by an
OMEGA a Model HBA 202040 heater and a Neslab Model RET-110 constant temperature
bath. The heater is mounted to surround the nickel heater section. Electrical power is
provided to the heater through a variac. Water is circulated by the constant temperarure
bath through a water jacket which surrounds the ambient heat exchanger, also circulated
through flexible plastic tubing which is wrapped around the copper twbe to maintain a
uniform temperature. Three type E thermocouples were glued to the top, middle, and
bottom the the long copper section of the prime mover to sense the temperature along that
section.

The closed end of the copper tube accommodates an ENDEVCO Model 8510B-5
piezoresistive pressure transducer, housed within a back volume. A high impedance leak is
provided between the resonator and the back volume to eliminate dc pressure difference
with little effect on acoustic pressure differences.

Experimental Resuits

Figures 2 and 3 show the waveform and the spectrum of the sound generated by the prime
mover above onset. The mean gas pressure is 307 kPa. The temperature difference across

60 mV

(AN AA
VAVAVAY

0 sec 8 msec

-60 mV
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of 325 °C.
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Figure 3. Spectrum of waveform shown in Figure 2.

the stack is 325 °C which is slightly above onset. The signal exhibits slight distortion,
particularly in the positive cycle. Figure 3 shows that the difference in spectrum level
between the first few modes is larger than 15 dB. Figures 4 and 5 show results for a
temperature difference of 368 °C, the signal is distorted sharply in both positive and
negative half-cycles. The difference between spectrum levels for the first few modes has
decreased further to less than 6 dB and more energy has been spread to higher modes.

AN
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60mV
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Figure 4. Waveform of the sound generated by the prime mover at a temperature difference
of 368 °C.
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Figure 5. Spectrum of waveform shown in Figure 4.




607

The peak positive pressure amplitudes for temperature differences of 325, 368, and
433 °C amplitude are approximately 3.3, 13.5, and 24.2 kPa, respectively. These
amplitudes correspond to approximately 1.1, 4.4 and 7.9% of mean gas pressure.

There can be little doubt that the signal at the higher frequencies is being generated by
the fundamental. If we examine the frequency of these spectral peaks, they are integral
multiples of the fundamental to within four significant digits and have no measurabie line
width.

Interpretation of Results

Prediction of harmonic generation (one method of describing the non-sinusoidal waveform)
is not straight forward even with a good understanding of dissipation mechanisms in the
stack. In a resonance tube, the frequency of overtones depends upon dispersion while
harmonic generation results in exact multples of the fundamental. This means that sound
generated nonlinearly will be generated at a frequency different from a tube resonance. We
will develop here only a qualitative treatment.

We apply a treatment of finite amplitude standing waves by Coppens and Sanders
(1]. They have shown that the ratio of the amplitude of the second harmonic to that of the
fundamental is given by

Pplp | B_

Similarly, the amplitude of the third harmonic to that of the fundamental is given by

pen () e
! 1/ poco

In these equations P = (y+1)/2, pg is the ambient density of the gas, c, is the infinitesimal
amplitude sound speed, Q, = (7 w/4 @ cg) cos 8, and Qy = (Y3 w/4 a cg) cos 6;. ais the
attenuation coefficient, which is related to the quality factor q as & = @/2qcq. For a system
driven at its fundamental frequency {1], tan 8, = 0.414 and tan 6; = 0.732.

_ Above the onset of self oscillation, the q of the fundamental q, is infinite. Therefore
q; must be estimated from the q's higher modes. The prime mover is dominated by wall
losses and 50 gy = @2,

The peak amplitude of the fundamental in Figure 3 is 3.3 kPa. Assuming T =293 k
(which is approximately true for most of the prime mover) and an ambient pressure of 307
kPa, pg = 0.54 kg/m3, B = 1.33 and ¢y = 1008 m/s. The q of the third mode is 68.
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Performing the calculations yields (P,/P;) = -20 dB and (P3/P;) = -32 dB. Referring to
Figure 3 shows that the measured values are closer to -16 and -32 dB, respectively, in
reasonable agreement with theory.

For the case shown in Figure 5 the calculations predict (Po/P}) = -7 dB and (P3/P}) =
-8 dB while the measured values are -7.6 and -14.5 dB, respectively. At even higher
fundamental amplimdes, the results are even less acceptable.

Although the results of this analysis are not extremely accurate, they do serve as a
motivation to carry the treatment further. The reasons for the discrepancies are not clear.

Conclusions

At this point, we are not in a position to determine the relative contributions from non-linear
propagation and non-linear generation to the observed waveform distortion. At the very
minimum, such a determination will require an accurate model for velocity dispersion in the
prime mover. This area is receiving attention now. Beyond that, the equations which give
rise to acoustic gain have been lincarized. A numerical solution of the coupled momentum
and energy equation might identify significant non-linear terms in the coefficient of gain.
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An experimental and theoretical investigation of sound propagation in a porous sample
composed of capillary tubes with rectangular cross sections is described in this paper. An
experimental technique valid for low flow resistivity and high porosity porous samples was
developed to measure the attenuation and phase velocity in the porous material. This technique
uses transmission of a short puise in a large tube through the porous sample and subsequent
frequency domain analysis in the range 200-1300 Hz. Good agreement was obtained if an
anomalous tortuosity factor of 1.1 is used in the theory. A scaling factor for relating cylindrical
and square tube capillary theories, known as the dynamic shape factor, was investigated.
Propagation constants computed from use of a near unity dynamic shape factor in the
cylindrical pore theory agree favorably with calculations based on the square pore theory for

the frequencies and pore radii used in the experiment.

PACS numbers: 43.20.Myv, 43.55.Ev, 43.28.Fp, 43.50.Vt

INTRODUCTION

The interaction of sound with porous media has many
practical applications and a long history. Porous media are
ideal sound absorbers for use in architectural acoustics and
anechoic chambers. The porous nature of the earth’s surface
and ocean bottoms can greatly influence the propagation of
sound in the air and oceans. An example of the diverse uses
of sound propagation in porous media comes from our labo-
ratory, where we recently used measurements and theory for
sound propagation in the porous ground to determine phys-
ical parameters that are related to the agricultural suitability
of the soils investigated.'

Several models®* for porous media are based on the
adaptation of the solution for sound propagation in cylindri-
cal capillary tubes to pores of irregular geometries. The basic
fluid field equations used in these models are a simplified
version of the linearized Navier-Stokes equations’ for a flu-
id. The approximation employed in this calculation is that
the transverse fluid velocities are much smaller than the lon-
gitudinal fluid velocity. Zwikker and Kosten® were first to
obtain the solution based on the simplified version of the
fluid model equations and showed that these solutions
agreed with Kirchhoff's exact solution® in the limit of high
and low frequencies. Tijdeman® and Stinson’ investigated
the range of validity of the Zwikker and Kosten solution in
comparison to the more rigorous Kirchhoff solution and de-
termined that the condition for the approximation to hold
was the condition on velocities listed above. Tijdeman refers
to the Zwikker and Kosten theory as the “low reduced fre-
quency approximation.”

We have developed a porous media model for rectangu-
lar cross-section capillary tubes. The rectangular pore calcu-
lation is based on the low reduced frequency approximation.
Specifically, the model allows one to compute propagation
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constants and characteristic impedances for porous media
consisting of rectangular pores. The effects of a slight capil-
lary tube curvature or tortuosity are accounted for in this
model. For the single pore, a series solution is used for the
particle velocity, pressure, density, and temperature. The ex-
tension of the single-pore theory to bulk media consisting of
an array of pores is developed using standard techniques.™*
This is discussed in Sec. I. The single-pore solution for rec-
tangular pores has been developed independently by Stin-
son.’

The rectangular pore model is compared to attenuation
and phase velocity measurements. The ceramic porous sam-
ples used in the experiment consisted of nominally straight
capillary tubes having square cross sections. These low flow
resistivity, high porosity samples may be useful for low-fre-
quency sound absorption. A more thorough description of
the porous samples and experimental technique is given in
Sec. I1. Comparison of theory and experiment is discussed in
Sec. 11 .

A general theory for arbitrary pore shape® was devel-
oped by introducing a scale factor known as the dynamic
shape factor to scale between different pore geometries. The
limiting cases for this scaling facior are circular pores and
parallel slits. The limiting cases of rectangular pores are
square pores and parallel slits, which give rectangular pore
theory a wide range of applicability. The dynamic shape fac-
tor for square pores is frequency dependent. just as it is for
parallel slits." A discussion of the dynamic shape factor for
square pores is given in Sec. IV.

I. PROPAGATION IN RECTANGULAR PORE MEDIA

Sound propagation in a single rectangular capillary tube
is developed first. The acoustic field in the pore is specified to
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first order in the acoustic variables. Boundary conditions at
the pore wall are that the walls are rigid and thus the total
particle velocity is taken as zero. Due to the high heat capac-
ity and thermal conductivity of the pore wall, the tempera-
ture of the fluid in the pore at the boundary is taken to be the
same as the pore wall. We do not assume any internal mean
flow.” The siiigle-pore theory is then used to develop the
theory for a porous material consisting of an array of rectan-
gular capillary tubes possibly having a slight longitudinal
curvature or tortuosity.

A. Acoustical disturbances in a single rectangular
capillary tube

The coordinate system shown in Fig. 1 has the z axis
parallel to the tube axis. The transverse dimension is
spanned by an x-y coordinate system with the origin at the
lower left corner of the rectangle. First-order acoustic vari-
ables are the real parts of

p(2.1) = py + p, (2) exp( — iwt), (1
vixpzt) = [v (xp.2) 0, (xp.2)0, (x0.2) ]
xexp( — iwt), (2)
T(xpzt) =T, + T, (x.,9.2) exp( — iwt), (&))]
and
plx.pzt) =p, +p, (x,3.2) exp( — iwt). (4)

Subscript zero refers to ambient values: subscript | implies
first order: and in Eq. (2) the x, p, and z components of
particle velocity are v, v, and v,. respectively. Equations
(1). (3). and (4) are the acoustic pressure, temperature,
and density. Acoustical disturbances within the pore are tak-
en to satisfy the following relations:

dp, (2) (3‘ a’)
— (xp2) = — +n{— + =) v, (xp2),
1wp,v, (X,.2) dz n ax ayz 34
&)
— iwp, (x,0,2)
d \ dv, (x, d, (x.y.2)
"( b, (x.p.2) + v, (x,9,2) + (x,p )=0’
ox dy dz
(6)
2b Y.
z
3
I(-—Z a——>|
FIG. 1. Coordinate system and geometry tor the smgle pore calewhinion
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pi(xp2) = —p, BT, (x.p.2) + (y/c*)p, (2), (M
and

—iwp,c, T, (x.p.2) = — iwfT,p, (2)

: 2
+K(i—’+a—;) T, (x,p.2). (8)
ax> oy

These relations are given in the frequency domain where
d/dt is replaced by — icw, where 1 is time and w is angular
frequency. Response functions and transport coefficients are
¢, the constant pressure heat capacity per unit mass; y is the
ratio of specific heats; ¢ is the adiabatic sound speed:
B = —(dp/dT),/p,. is the thermal expansion coefficient;
is the viscosity; and « is the thermal conductivity. In order.
these equations express the z component of the equation of
motion, continuity or mass conservation. equation of state
for density, and heat transfer. Equations (5)-(8) are the
same set of equations used by Zwikker and Kosten.* In using
these approximate equations the assumption is that the
transverse velocity components v, and v, are much less than
the longitudinal velocity v.. Further discussions of these ap-
proximations can be found in Appendix B of Ref. 6. Appen-
dix A of Ref. 10, and Ref. 7.

The following notation will be used to facilitate com-
parison with Attenborough’s results.™™ A dimensionless
*shear-wave number™ that is proportional to the ratio of the
pore radius and the viscous boundary layer thickness is
A = R(p,w/1)"". Here R is a characteristic transverse di-
mension of the pore. For definiteness we take R to be twice
the transverse pore area divided by the transverse pore pe-
rimeter. Thus R, which is twice the hydraulic radius.'" s the
tube radius for a cylindrical pore and the semiwidth for a
square pore. “Wide tubes™ with the same R are acoustically
equivalent, i.e.. they have the same propagation constants.’
A dimensioniess number proportional to the ratio of the pore
radius to the thermal boundary layer thickness is
A, = R(pywe,/x) For A, = AN where N, = yc./kis
the Prandtl number.

To make rapid progress. denote the = component of the
particle velocity ¢. by

F(x.p,A) dp, (2)

v, (xp.2) = (9
wp, dz
Similarly, denote the acoustic pore temperature by
T, (xyp.2) = [(y = 1)/puB |p, (2)F(x.y:A,). (10)

The thermodynamic relation 7,8 /¢, = ( - 1)/¢" can be
used in Eq. (8) for T,. The particle velocity and tempera-
ture. Egs. (5) and (8). reduce to the simple forms

Flxp:d) +R_(6_ 3_) FlxpA) =1 ()
iA-\dx dy
and
FlxyA,) + L— ((—?— + i——) FlxpvA,y=1. (1)
A5 \dx  dv

respectively, subject to the boundary condition # = 0 at the
pore boundary. This is the particle velocity and excess tem-
perature boundary condition. The solution for Fixi)tor
rectangular pore boundaries is'’
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sin(mmx/2a) sin(nmy/2b)

16
F T ——
(xp34) ; E

’

m.n odd mn Ym,n (4
(13)
where
Yoo (R) =1+ (ir? /A ) [(°m? + a*n*)/(a + b)?]
(14)

and twice the ratio of transverse pore area to perimeter is
R =2ab/(a + b). [Recall that 4 = R(p,w/7)""%] In the
sums, m and n are odd numbers ranging from 1-« . For later
use, the average F(4) = [1/(4ab) | §F(x,y;A )dx dy over the
pore cross section is

S S— (15)
T man odd m'n‘Y,,,_,, (A)

The z component of the particle velocity is given by Eq. (9)
with F(x,p:4) in Eq. (13) and the excess temperature is giv-
en by Eq. (10) with the replacement of 4 in Eq. (13) by 4.

To derive a wave equation for the pressure, the fluid
equations in Egs. (5)-(8) are averaged over the pore cross
section. Denote by p, (2) = [1/(4ab) }§p, (x,p.2)dx dy the
average of the acoustic density in the pore and use similar
notation for v, (z) and T, (2) for the transverse area average
ofv. (x,,2) and T, (x,p.z). Use of Egs. (9) and (10) for thez
component of the particle velocity and temperature and the
fluid equations (5)~(8) results in a set of averaged equa-
tions:

iwpy dp, (2)
(2) = ———, (16)
F790) v.(2) ™
dv,(z)
— iwp, (2) + po = =0, (17)
and
P (@) ={[{( =P FAr) +v]/p, (2). (18)

The boundary conditions, v, (x,y,2) =0 and v, (x,p,2) =0
at the boundary, were used in obtaining Eq. (17) from the
continuity equation (6). Also, Eq. (10) for T, (z) was used
in the equation of state (7) to obtain Eq. (18). Following
Attenborough’ we define a complex density from Eq. (16)
and complex compressibility from Eq. (18).

i)=po/F(i) (19)

and

C=(1/py)(pi/p) = [(1 = IF(A,) + ¥]/pac’.
(20)

Eliminating p, from the continuity and state equations (17)
and (18) and using Eqs. (19) and (20) we obtain

d
iwpv, () — "':) =0 21
and
d -
”;i’) — iwCp, (2) =0. (22)

2619 J. Acoust. Soc. Am., Vol. 89, No. 6, June 1991

B. Extension to bulk media: Propagation constants and
characteristic impedance

Consider a fluid half-space overlying a porous haif-
space saturated by the same fluid. The pores are taken to
have a rectangular cross section and we let the capillary tube
axis of each pore be at an angle @ with respect to the surface
normal. The tortuosity ¢ = 1/cos € for such a porous sam-
ple.>**!" The open volume divided by the total volume is
the porosity 2 of the sample. The boundary conditions are
continuity of volume velocity (from mass conservation) and
the continuity of pressure (from Newton’s third law) at the
porous interface.>*>* Since fluid only flows into the pores,
the bulk particle velocity ¥,, in the porous media is
V., = Qu,/q.*"" In order to account for propagation in a
slanted pore (or other tortuous path), the differential dz in
Eqgs. (21) and (22) is replaced with ¢ dz, where ¢ > 1 is the
tortuosity.>** Thus the bulk acoustical equations are

.. Va(2) dPl(Z)_
“wpd Q qdz -

0 (23)

and
av,(z)
Ndz

Differentiating Eq. (23) by z and eliminating V,, with Eq.
(24) give an expression

— iwCp, (z) =0. (24)

d’p, (2) =
———+ &pC¢p, (2) =0 (25)
dzz p qul )
for the pressure in the porous media. Assuming

P < exp(ikz) gives the dispersion relation

k?=w'qHC = (/A g{[(1 = FA,) + y|/F(A)}
(26)

for the complex wave number k. From Eq. (23), the charac-

teristic impedance is

=i)¢0ql - Po 9q c
Ok F(,{)!/z Q [(I—}’)F(i,»)-%y]"l

(27)

The plane-wave pressure reflection coefficient r, for a wave
normally incident from the fluid half-space on the porous
sample is
, _Z=pe _FO[—pFA) +7]} -/
" Z+pe {F[N=MFA,)+y]} "+ Qq
(28)
This relation will be used in the next section. Principal re-
sults of this section are the propagation constant (26} and
characteristic impedance (27), which for rectangular pore

porous media are to be evaluated with the function F(A)
given in Eq. (15).

Il. MEASUREMENT OF THE PHASE VELOCITY AND
ATTENVATION

A. Description of the.porous media

A schematic drawing of the porous sample is shown in
Fig. 2. Each subsection of the composite sample was of the
nominal length 7.68 cm. Figure 2 indicates a composite sam-

Roh et a/.: Acoustic propagation in small rectangular tubes 2619




(b}

SIDE VIEW:
5 SUBSECTION-
COMPOSITE SAMPLE

END VIEW

F1G. 2. (a) Side and (b) end view of a square pore porous sample. To form
the total sample several pieces of the nominai length 7.68 cm were put to-
gether. It was not possible (o, align the squares from subsection to subsec-
tion.

ple made from five individual pieces. Individual pieces were
taped together at the joint. A sheet of Teflon was wrapped
around the composite to facilitate insertion of the sample
into the plane-wave measurement tube and seal the sample-
tube interface. Individual pieces were ceramics made by
Corning."" The pores of each piece were nominally square in
cross section and nominally straight in the longitudinal di-
rection.

Three different square pore media were investigated.
Table I lists characteristics of each. In Tabie I, porosity was
estimated using {} = (number of pores/unit area) X (2a)?,
where a is the square semiwidth. Flow resistivity was com-
puted using (see Ref. 8) o = 87n¢°s/a’(, where s is a steady
flow shape factor s = 0.89 for square pores'' and a tortuo-
sity ¢ = 1.} was estimated from fitting the theory and experi-
ment for the propagation constants as discussed below. In
comparison with other porous media," the square pore sam-
ples have low flow resistivity and high porosity. The average
semiwidths are listed in Table I for the 200- and 400-
pores/in.2 material, for which the pore cross-sectional shape
is well approximated as a square. However, due apparently
to differences in the manufacturing process, the pores of the
300-pores/in.> samples were not well approximated by a
square shape. Two opposite corners of the otherwise square
shape were rounded. The semiwidth of @ = 0.50 mm listed in
Table I for the 300-pores/in.’ samples was determined from
the shortest diagonal length divided by (2*%). No explicit
use was made of the calculated flow resistivity in the theory
for the propagation constants. -

B. Experimental apparatus
A block diagram for the experimental apparatus used to

determine the attenuation and phase velocity of sound in”

porous media is shown in Fig. 3. A single cycle of a sine wave

TABLE 1. Geometrical praperties of the three porous samples used.

Pores/unit area  Semiwidth a Porosity 11 Flow resistivity o
(in. %) (mm) (%) (Nm *s)
200 0.77 73 Jo8
300 0.50 47 1356
400 0.57 81 606

e ——————
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Digital Scope &
FFT Analyzer
Differential Single cycle tone
Amplifier burst generator
Microphone Power Power Amplifier &
Supply 125 Vois D. C
Power Suppl
[
MIC 1 MIC 2
fowof » 1376 Hz

SQUARE PORE
COMPOSITE SAMPLE

T e ———

CAPACITIVE
DRIVER

o o]

F1G. 3. Block diagram of the apparatus used to determine the phase velocity
and attenuation of sound in fow Row resistivity, high porosity samples.

of duration 1.3 ms (for a center frequency of 750 Hz) was
generated using a function generator. The signal was ampli-
fied and was added to a dc polarizing voltage of 125 V. The
capacitive driver consisted of an aluminized mylar mem-
brane stretched over a grooved backplate.'* A Tefion ring
around the perimeter of the driver was used to hold the my-
lar in place and seal the driver inside the tube. The tube was
made of aluminum and had a length of 6.09 m, an inside
diameter of 14.6 cm, and a wall thickness of 1.11 cm. Holes
were made and threaded in the tube 60 cm from each end and
the microphones were inserted to be flush with the inner tube
wall. A minicomputer with a 12-bit analog-to-digital board
was used to record and analyze the amplified microphone
signals. The digitizing rate was 300 kHz. The function gener-
ator was used to trigger the minicomputer and 30 pulses
were averaged in the time domain for each measurement.
The purpose of microphone 2 was to give a reference time
and space location for a pulse traveling in the empty tube, so
that the ambient sound speed could be determined from the
pulse arrival time at microphone 1.

A single microphone measurement method was used to
determine the propagation constants in the square pore me-
dia. Figure 4(a) shows microphone | measurement of pulses
with and without a sample present in the tube. As expected,
the pulse measured with the sample present is delayed in
tire and attenuated on account of passage through the po-
rous media. The Fourier transform of a typical pulse indicat-
ed that the pressure level was about 20 dB above the back-
ground for frequencies in the range 200-1300 Hz. The cutoff
frequency' above which nonplanar modes can propagate in
the tube is 1376 Hz.

C. Determination of attenuation and phase velocity by
the transfer function method

Denote by p, (¢) the incident pressure pulse at the right
end of the sample and denc*e by p, ( f )-the Fourier trans-
form of p, (¢). The spectru ( f) after passage through a
‘sample of length D, is
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F1G. 4. (a) Sample waveforms for microphone | with and without the po-
rous material in the tube. The porous media was constructed as shown in
Fig. 2. (b) Expanded schematic view of the tube and porous sample in Fig.
3. The Fourier transform after the incident pulse passes through the sample
isp,(f)

:
l—r,

1 —r2exp(2ikD,,)’
(29)

where 7, is the frequency dependent pressure reflection coef-
ficient (28) and k is the complex wave number for the po-
rous media (26). Since the tube has a large diameter we
approximate the characteristic impedance of the tube by p,, c,
where ¢ is the adiabatic sound speed in air. The exp(ikD,,)
factor accounts for propagation through the sample, the
(1 — r}) factor is for transmission into and out of the sam-
ple, and the denominator accounts for the multiple reflection
of waves within the sample.

In Eq. (29) the subscript m refers to the number of
subsections used for a measurement. For example, m =5 in
Figs. 2 and 3. We may form a transfer function 4,, ( /) from
the results of two experiments on different porous sample
lengths. The Fourier transform of the time domain pulses
recorded by microphone 1 in Fig. 4(b) for two different sam-
ple lengths gives, from use of Eq. (29), a transfer function

hm(f) =Pm(f)/P|(f)=CXP[l(k—kn)(D,,, _Dl)]'
(30)

where k, = w/c is the wave number for.sound in air and k is
given in Eq. (26). In Eq. (30) the single subsection spec-
trum p, ( /) was used as a reference to divide out the fre-
quency response of the capacitive driver and microphone,
and the transmission coefficient (1 — r?2) in Eq. (29). The
second part of Eq. (30) is an approximation because we have
assumed [(1—r}exp2ikD,)/(1 —r, exp2ikD, )] =1.
The reflection coefficient 7, in Eq. (28) is significantly less
than 1 for two reasons. First, |[F(4)| =1 for the frequency
range of the present experiment as a consequence of the low
flow resistivity of the square pore samples used. Second, for
the square pore material the porosity (1 is large. Hence by

P f) =p,(f) exp(ikDm)
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Eq. (28) we expect r ; =0. Measurements of , with micro-
phone 2 in Fig. 3 for a nominal frequency of 750 Hz gave
|r 2] =(0.03, 0.05, and 0.03) for the (200, 300. and 400)-
pores/in.’ samples, respectively.

The phase velocity and attenuation constant are com-
puted from k = w/c,, + ia,

e (f)=2af/[(D,, —D,) '"Imln(h,) + k],

3
and

a(f)= —[20(D,, — D,) " '/In(10)] RelIn(4,,),
(32)

where ¢, is the phase velocity; a is the attenuation in
dB/cm; and Re In(4,, ) and Im In(4,, ) refer to the real and
imaginary parts of In(4,, ), respectively.

Equations (30)—(32) were used to analyze the time do-
main pulses to obtain experimentally the phase velocity and
attenuation for the square pore media. In all cases, we aver-
aged over 30 time domain pulses before taking transforms.
We also used five subsections, so that m = 5 in Egs. (30)-
(32) and (D,, ~ D, ) = 30.7 cm nominally. Since a transfer
function technique was used, it was not necessary to deter-
mine the pressure absolutely or the frequency response of the
microphone. A central assumption that was verified experi-
mentally was the repeatability of any pulse measurements
since p, (¢) and p, (¢) were measured at different times. The
experimental results for the three different pore sizes given in
Table I are displayed in Fig. 5. The experimental technique
described here is similar to a method used by Ding'® t6 mea-
sure the reflection coefficient of absorbents.

An error analysis can be made by using an unapproxi-
mated transfer function for Eq. (30) in Egs. (31) and (32).
Let A=r} [exp(2ikD,,) - - exp(2ikD, ) |. The fractional
error in phase velocity that occurs due to the approximation
inEq. (30)isd, =Im Ac,, ( f)/[27f(D,, — D,)].Similar-
ly, for attenuation, §, =0.2Re A/[a( f)In 10(D,, — D)) ].
where (D,, — D,) is in meters. Use of representative
numbers for the 200-in. ® material gives & =~ 1% and
8, =7%. To improve on the error, D,, and D, should both
be uniformly increased. The errors introduced by making
the approximation in Eq. (30) are the greatest source of
error.

(1. DISCUSSION OF EXPERIMENTAL AND
THEORETICAL ATTENUATION AND PHASE VELOCITY

The experimental and theoretical attenuation and phase
velocity were determined from use of Egs. (30)-(32) and
(26), respectively, and kK = w/c,, + ia. Figure 5(a) and
(b) shows the experimental and theoretical attenuation con-
stant and phase velocity. For the theory, the physical con-
stants used were ¥y =14, N, =0.707. p, = [.2 kg/m".
7= 185X 10 *kg/(m s), and the adiabatic sound speed ¢
from the propagation time of a pulse between microphones 1
and 2 in Fig. 3 with no sample in the tube. -

To obtain the acceptable agreement among theory and
experiment indicated in Fig. 5(a) and (b). a tortuosity of
g = 1.1 was used. Referring to Eq. (26) for the propagation
constant k, note that the effect of tortuosity (whichisg>1)
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FIG. 5. (a) Experimental and theoretical attenuation and (b) phase veloc-
ity for the three square pore semiwidths given in Table I. The solid symbols
are experimental points. The squares, circles, and triangles are the 200-,
400-, and 300-in. ° results. The error in (a) was estimated to be twice the

. size of the square symbols. A representative error bar is shown in (b).

is to increase the attenuation a and decrease the phase veloc-
ity, as one would intuitively expect. The calculated propaga-
tion constant for a tortuosity ¢ = 1 results in an attenuation
10% lower than the measured value and a phase velocity
10% above the measured value. The discrepancy between
experimental and theoretical phase velocity in Fig. 5(b) for
the 300-pores/in.’ samples having pores of semiwidth 0.50
mm may be due to the irregular shape of the pore cross sec-
tion, as described in Sec. II A.

Pores that have a tortuosity other than 1 have a radius
which is not constant along the pore, a slight curvature or tiit
with respect to the axis normal to the surface, or are in a
material for which the rigid frame assumption is not valid.*
In the ceramic square pore material used in the experiment,
the pores were straight and the pore walls had a density and
stiffness much greater than that of air. However, the
semiwidth of the squares as determined with a measuring
microscope at the sample surface varied by approximately
5% from the average value. This variation could result in a
tortuosity other than 1 if the 5% radius variation also ex-
tended down a single pore. Another possibility for a tortuo-
sity other than | is that the ceramic pore walls were also
porous. Use of a measuring magnifying glass indicated that
the pore walls were indeed porous, with an’average pore
diameter of about 75 um and pores as large as 100 um. Wall
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pores were spaced by about 150 um. Apparently, the wall
pores did not connect adjacent square pores. Intuitively, 1t
seems that the effects of porous walls would be to increase
the compressibility of the gas and hence decrease the phase
velocity. The attenuation would also increase, which is what
was observed experimentally. Champoux'® reported a tor-
tuosity of 1.2 for the 200- and 400-pores/in.* samples using a
nonacoustical technique."’

It was not possible to align the pores in neighboring
subsections of the composite sample, as discussed in Sec.
IT A. To investigate the effects of misalignment, attenuation
and. phase velocity were measured for composite samples
consisting of one to five subsections. In the single subsection
measurement the reference for the transfer function in Eq.
(30) was taken to be the empty tube signal. The discrepancy
between these measurements was less than 3% and showed
no systematic trends. Sample misalignment was probably
not the cause of an apparent tortuosity greater than 1.

IV. DYNAMIC SHAPE FACTOR FOR SQUARE PORES

The hypothesis of Attenborough's® cylindrical capil-
lary-tube-based porous media theory was that a circular
pore of radius a/n, where n is known as the dynamic shape
factor, could be made acoustically equivalent to another
pore of characteristic radius a by proper choice of n. The
condition for acoustical equivalence is taken to be

Imp (4/n) =1Imp (1), (33

where we recall that 4 = a(p,w/7)'"* for a circular pore of
radius g or a square pore of semiwidth a and subscripts ¢ and
s refer to circular and square pores, respectively. This condi-
tion occurs since the imaginary part of the complex density g
is very large for small A and thus determines the behavior of
the propagation constants and impedance for small 4.”

The complex density is given generally for rectangular
poresin Eq. (19). For square pores of semiwidth a the func-
tion F (A)is

F,(i)=-6;t E 22 .7‘ 2 2 2
7 maeas m*n*{l + (iT? /44 %) (m* + n?)]

(34)

from Egs. (14) and (15) for the special case a2 = b. For cy-
lindrical pores,’

F (A/m)y =1~ [2/fi@a/m][J,(Jid/my/0,(Jid /)],
(35)

where the dynamic shape factor n has been inserted and the
J's are Bessel functions. The range® of n is thought to be
0.5<n< 1. The dependence of n on the shear-wave number A
is shown in Fig. 6.

The shear-wave-number range in our experiments was
4.5<A<18. Asindicated in Fig. 6, nis a frequency dependent
parameter, which has been previously noted.” Choosing a
representative value of A = 4.532, the corresponding value
of the dynamic shape factor is n = 0.97. Propagation con-
stants are shown in Fig. 7 for square and circular pore theo-
ries, where the value n = 0.97 was used. Propagation con-
stants for circular pores were computed from the use of Eq.
(35) for F(A) in Eq. (26) for k. There is less than 1 % differ-
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FIG. 6. Dynamic shape factor # to scale between the square and circular
pores of semiwidth « and radius a/n. respectively.

ence between the propagation constants calculated with
these theories.

V. CONCLUSION

We have developed a model for porous media consisting
of rectangular pore capillary tubes. We accounted for vis-
cous and thermal dissipation. A series solution was obtained
for the transverse variation of the longitudinal velocity and
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FIG. 7. (a) Attenuation and (h) phase veloaity computed using a squatre

pore (solid fing) of semiwidth ¢ - .50 mm and a arcular pore (dashed
line) of rudius ¢ -~ 0.50 mm/n, where - 0,97 v a dynamic shape Factor.
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the excess temperature. A measurement technique using fre-

'quency domain analysis of short pulses propagated through

high porosity, low flow resistivity samples was developed for
determining propagation constants. Propagation constants
were measured for a ceramic porous media having straight
capillary tube openings with square cross sections. Use of an
anomalous tortuosity factor ¢ = 1.1 resulted in favorable
agreement among experimental and theoretical values of the
propagation constants. It was argued that the nonunity tor-
tuosity value was due to the finite porosity of the ceramic
pore walls. A dynamic shape factor n = 0.97 was suggested
as the radius scaling factor for square and circular pore theo-
ries for the frequency range (200-1300 Hz) and pore sizes
(0.50-0.77-mm semiwidth square pores) of this investiga-
tion. Future work will involve an investigation of the anoma-
lous tortuosity and propagation constant measurements on
longer samples.
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Theoretical treatments of thermoacoustics have been reported for stacks with circular pore and
parallel plate geometries. A general linear formulation is developed for gas-filled
thermoacoustic elements such as heat exchangers, stacks, and tubes having pores of arbitrary
cross-sectional geometry. For compactness in the following, F represents the functional form of
the trangverse variation of the longitudinal particle velocity. Generally, Fis a function of
frequency, pore geometry, the response functions and transport coefficients of the gas used,
and the ambient value of the gas density. Expressions are developed for the acoustic
temperature, density, particle velocity, pressure, heat flow, and work flow from knowledge of
F. Heat and work flows are compared in the short stack approximation for stacks consisting of
parallel plates, circular, square, and equilateral triangular pores. In this approximation, heat
and work flows are found to be greatest for the parallel plate stack geometry. Pressure and
specific acoustic impedance translation theorems are derived to simplify computation of the
acoustical field quantities at all points within a thermoacoustic engine. Relations with
capillary-pore-based porous media models are developed.

PACS numbers: 43.35.Ud, 43.28.Kt

INTRODUCTION

In a broad view, thermoacoustics can be regarded as the
study of effects due to the interaction of heat and sound. A
large and growing subbranch is concerned with thermoa-
coustics in fluid-filled (gas and liquid) resonators though
observations of heat-driven oscillations in tubes date back to
at least the late 18th century. A full, linear, theoretical inves-
tigation of these oscillations was performed first by Rott.'
The reciprocal mode of operation, which uses a sound wave
in a resonator to transport heat from cold to hot as in a
refrigerator, has also been of recent interest. This thermoa-
coustic streaming has its analogy in acoustic streaming,
which is the D.C. transport of momentum by an acoustic
wave. Merkli and Thomann? found experimental verifica-
tion for their theory of thermoacoustic streaming in a driven
resonance tube. Rott and Merkli and Thomann were mainly
interested in thermoacoustic effects in a single tube having a
circular cross section. Rott and Zouzoulas® also investigated
thermally driven acoustic oscillations for circular tubes with
variable cross-sectional area.

Wheatley, Cox, Swift, Hofler, and others have deve- .

loped the connection between the acoustical portion of ther-
moacoustics and a broader thermodynamics point of view.
Swift* has reviewed much of this work, from fundamentals
to state-of-the-art. Thermoacoustic elements such as heat
exchangers and a stack, as shown in Fig. 1(a), are used to
investigate prime movers and heat pumps. In the thermo-
dynamic point of view heat exchangers and stacks are
thought of as heat reservoirs and engines, respectively. This

*’ This work was presented, in part, at the 120th Meeting of the Acoustical
Society of America (J. Acoust. Soc. Am. Suppl. 1 88, S96 (1990)].
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point of view enhances the understanding of thermoacous-
tics and is very helpful in evaluating practical devices.

An exposed view of a thermoacoustic element is shown
in Fig. 1(b). Thermoacoustic elements consist of a parallel
combination of many elementary capillary tubes or pores. In
Fig. 1(b) the pores have square cross sections. The theory
for a thermoacoustic heat engine is built up from knowledge

cold hot

acoustic heat heat

driver exch stack exch
N Z

7

resonance tube
(a)

(b) exposed view of a thermoacoustic element

=

single arbitrary-perimeter tube of a
thermoacoustic element

FIG. 1. (a) Generic arrangement used in thermoacoustic heat engines.
Thermoacoustic clements are the heat exchangers, resonator sections. and
stacks. (b) An exposed view of a thermoacoustic element consisting of a
parallel combination of square capillary tubes. (c) A single arbitrary-peri-
meter capillary tube for use in a thermoacoustic element.
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of thermoacoustic effects in a single capillary tube. Both
Rott’ and Swift* considered thermoacoustic effects for
acoustic oscillation between parallel plates.

The initial intent of this study was to investigate ther-
moacoustic effects in a stack having square pores as shown in
Fig. 1(b). Inexpensive sources of square pore stack material
are ceramic monolithic catalyst supports often used in auto-
mobile catalytic converters.® This ideai-geometry material
was previously used to verify first-principles theory for
sound propagation in porous media.” Since ceramic has a
low thermal conductivity in comparison to most metals, it is
attractive for use as a stack as parasitic heat loss due to ther-
mal conduction reduces efficiency.

In this paper, thermoacoustics is investigated for stacks
having arbitrary pore geometries ( parallel plates, rectangu-
lar pores, equilateral-triangle pores, circular pores, etc.). In
particular, our interest is in the following question: What are
the minimum necessary calculations to describe the acoustics
of gas-filled thermoacoustic elements made of arbitrary-peri-
meter capillary tubes? An example of an arbitrary-perimeter
capillary tube is shown in Fig. 1(c). Rott® pursued this ques-
tion to the point of computing the acoustical quantities for
parallel plate and circular pore geometries. Here, the acous-
tic ficld quantities and the second-order energy flow are con-
sidered for arbitrary perimeter pores. Heat and work flows
are compared in the short stack approximation for stacks
having the aforementioned pore geometries to investigate
the effects of pore geometry. In addition, connections are
established between thermoacoustic theory and capillary-
tube-based porous media theory. An analogous investiga-
tion has recently been performed for porous media by Stin-
son.®

Once the acoustical properties of the separate thermoa-
coustic elements have been determined, the elements must
be connected in series inside of a resonator as shown in Fig.
1(a). Previously, numerical integration of the acoustical
equations was used to compute field quantities in the stack
since, in general, a temperature gradient exists from one end
to the other."* The physical parameters of ambient density,
viscosity, sound speed, thermal conductivity, etc., are tem-
perature dependent and thus depend on location within the
stack. Here, specific acoustic impedance and pressure trans-
lation theorems are developed to compute ail acoustical field
quantities and energy flow at each point in the resonance
tube shown in Fig. 1(a). Translation theorems are relations
between specific acoustic impedance or pressure at location z
and the value of these quantities at a different location z — d.
Using the translation theorem approach it is easy to analyze
comblicated systems, e.g., a resonator containing a refrigera-
tion stack, a prime mover stack, and heat exchangers.

Section I A contains the basic fluid equations and as-
sumptions. The force equation is considered in Sec. I B and
the transverse temperature profile is given in Sec. IC. A
differential equation is given for the the acoustic pressure in
Sec. I D. Sections I A-I D apply to a single capiilary tube of
arbitrary perimeter. The specific acoustic impedance and
pressure translation theorems are developed in Sec. I E for
thermoacoustic elements. Expressions are given in Sec. | F
for heat and work flows in terms of pressure and specific
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acoustic impedance. A rumerical analysis technique for the
present formulation is given in Sec. [ G. An application of
the theory is given in Sec. II where heat and work flows are
computed in the short stack approximation for stacks having
a variety of pore cross sections. Here, the emphasis is on
investigating the effects pore geometry have on heat and
work flows.

I. PROPAGATION IN THERMOACOUSTIC ELEMENTS

The name stack was originally descriptive of the parallel
plate arrangement used for the thermoacoustic element
which possibly has a temperature gradient down it. The
pores in the parallel plate arrangement are described in their
transverse direction as parallel plates and as straight tubes in
their longitudinal direction [the z direction in Fig. 1(¢c)].
For arbitrary pore geometries, the stack or heat exchangers
can be described as a section of a porous medium. In this
section, the fluid field equations and assumptions necessary
to treat the general case are established. An equation for the
pressure in a single pore is established. Enroute, reference is
made to the terminology used in acoustical modeling of por-
ous media. With the specific acoustic impedance assumed
known at the hot end of the stack, impedance and pressure
translation theorems are derived for the stack. Heat and
work flows are computed for arbitrary pore geometries and
are expressed in terms of pressure and specific acoustic impe-
dance.

A. Fluid field equations and assumptions

The transverse coordinates in a pore are taken to be x
and y, and the longitudinal coordinate is z as shown in Fig.
1(c). The ambient temperature is taken to be a function of z
in the stack. Assumed is that the pore walls are of sufficiently
high heat capacity and thermal conductivity, in comparison
to that of the gas, that the pore wall temperature is locally
unaffected by temperature variations in the gas caused by an
acoustic wave. Also assumed are that constant frequency
pressure variations exist in the pore and that the pore walls
are rigid and nonporous. The pore is taken to be infinitely
long in the z direction. With these assumptions. the task 1s to
derive the pore acoustic field to first order in the acoustic
variables.

The fluid quantities in a pore approximated to first
order are

P(z,t) = P, + P, (2)exp( — iwt), (1)
v(xp.z,0) = [v,(x0.2) + v, (x,p.2)2]exp( — iwt), (2)
T(xy.z,t) = Ty(2) + T, (x,p.2)exp( — iwt), (3)
s(x,p.2,t) = 55(2) + 5, (x,p,2)exp( — iwt), (4)
plxp2t) =po(2) + p, (xp,2)exp( — iwt). (5

In order, Egs. (1)-(4) are the approximations to first order
for pressure, particle velocity, temperature, entropy, and
density. Acoustic waves of radian frequency w are assumed.
Where shown, subscript O indicates ambient values and sub-
script 1 the acoustic or first-order values. In Eq. (2),
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v (x.».z) and v, (x,,2) are the transverse and longitudinal
components of particle velocity. The ambient temperature
T, (2) is assumed to depend on z. Note the definition to be
used frequently below: T, =dT, (z)/dz. The ambient den-
sity in Eq. (5) also depends on position z. Because of the
ambient temperature gradient physical parameters includ-
ing density, viscosity 7, thermal conductivity «, adiabatic
sound speed ¢, and the coefficient of thermal expansion
B= - (dp/dT),/p, also depend on position.

The Navier-Stokes fluid field equations are given for
example in Ref. 9. The Navier-Stokes equations can be sim-
plified to model sound propagation in narrow tubes. Physi-
cally, the transverse variation (in the tube cross cection) of
particle velocity, temperature, etc., is much greater than the
longitudinal variation (down the tube) due to the close
proximity of walls where boundary conditions must be met.
For constant frequency waves, the approximate set of fluid
field equations to first order are

dP| (2)

— iwpyv, (X,p.2) = — s nViu, (x,0.2), (6)
a
— iwp, (xp.2) + [po (). (xy.2)]
dz

+po(2)V, v, (x,p,2) =0, )]
P (xp:2) = =~ po (2)BT, (x3.2) + (y/) P, (2), (3
5y (xp.2) = (¢,/To) T, (x.p2) — (B/po) P, (2), (9)
and
— iwpo (2)c, T\ (x,3,2) + po (2)c,v, (x,2) T,

= — iwPT,P, (2) +xVIT, (xp.2), (10)

where the transverse gradient and Laplacian operators are
definedbyV, = 3/dx % + d/dy’yand V2 = (3 ¥/dx* + 3%/
), ¢, is the isobaric heat capacity per unit mass, and y is
the ratio of specific heats. In order, these equations approxi-
mately express the z component of the equation of motion,
continuity or mass conservation, equations of state for den-
sity and entropy, and heat transfer. Except for the T, terms
in Eq. (10), these are the equations for the low reduced-
frequency approximation'® given by Zwikker and Kosten''
in their solution for the propagation of sound in circular
pores. In the derivation of Eq. (10), the convective deriva-
tive for the entropy is evaluated using the equation of state
Eq. (9) and the relation v-Vs = v, (x,y,2)ds5,(2)/dz =,
X v, (xp.2) To,/T,. Equation (10) expresses that the tem-
perature at a fixed position changes due to motion of the
ambient fluid, due to compression of the gas, and due to heat

- conduction. Further discussion of these equations and the:

validity of the approximations may be found in Refs. 4, 8,
and 10.

Several variations in notation should be noted. First, the
viscous and thermal boundary layer thicknesses are given by
8, = (2n/wp,) ' and 8, = (2x/wp,c,)'>. Swift* writes
most equations in terms of §, and &, . Tijdeman'® and Atten-
borough'? introduce a dimensionless “‘shear wave number”’
A = R(pow/n)"*orA =2'?R /5,, where R isacharacter-
istic transverse dimension of the pore. They also use the di-
mensionless thermal disturbance number 4, = R(p,wc,/
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x)"?orA, =2'"*R /8, for the ratio of the pore radius to the
thermal boundary layer thickness. Use of the Prandtl num-
ber N, = 7nc,/xgivestherelationd, = AN % For definite-
ness, take R to be twice the ratio of the transverse pore area
to the pore perimeter so for a circular or square pore, R is the
pore radius. This value of R is twice the hydraulic radius of
the pore. In this paper the A and 4, notation is used.

B. Transverse vejocity profile in a pore

To obtain a sotution to the equation of motion, Eq. (6),
the z component of velocity is taken to be

F(X»y;i) dPl (Z)

v (xp2) = — (1)
iapo dz
From the equation of motion, Eq. (6), F(x,p,4) satisfies
F(xyA) + (RYVIAHVIF(xpA) =1, (12)

subject to the boundary condition that £(x,y:4) is zero at the
pore walls. This is the boundary condition on particle velo-
city at the pore wall. As will become apparent in the following,
this is the only differential equation which needs to be solved
Jordetermining the first-order acoustic quantities and second-
order heat and work flows.

In anticipation of later developments, averages over the
pore cross section, defined for example by
v,(2) = A ~'fu,(x,p,2)dx dy, where A is the area of the pore
cross section, are taken. Denote by v, (z) and F(A4) the area
average of v, (x,»,z) and F(x,y;A) over the cross section of
the pore. The averaged equation of motion for the fluid can
now be expressed simply as

P
k@ o, (13)
iwpg (2)

Capillary-tube-based porous media modeling'"'? intro-
duces a complex density 5(z;4) at this point which is defined
as

v, (2)

P(ZA) =po (2)/F(A). (13)

The complex density is the apparent dynamical density of
the fluid in the pore.

C. Transverse temperature profile in a pore

The equation for excess temperature T, (x.y.2) in the
pore fluid is given by Eq. (10). Algebraic rearrangement
followed by wuse of the thermodynamic relation
ToB?/c, = (¥ — 1)/¢* for the first term on the right and by
use of Eq. (11) results in

T, (xp.2) + (RVIAF)VET, (x.p.2)
T,

y—1 :
= P (2) - F(x,y;A)
poB I Pow’

dP, (z)

(15)

Assume T, (x,»,2) can be written in the form
T (xy2) = G, (xyA7) [(¥ — 1)/FpoB | P, (2)
T, dP,(2)

pow® dz

-Gy (xyAAT) . (16)
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The excess temperature changes due to compression and ex-
pansion of the gas and from the second term, displacement of
gas which can have different ambient temperatures on ac-
count of the temperature gradient.

Effects on T, (x,p,2) of thermal conductivity and visco-
sity are accounted for in the dimensionless functions
G, (xyAr)and G, (x,;AA 7). For an inviscid, nonthermal-
ly conducting gas G, = G, = 1. Use of Eq. (16) splits Eq.
(15) into two equations corresponding to the two driving
terms

G, (xyAr) + (RYALIVIG, (xpd7) = |, (an
G,(xyAAr) + (R 2idd )szb (x ;4.4 7)
= F(xyA). (18)

The boundary condition is T, (x,y,2) = 0 for x and y on the
pore boundary; therefore, G, (xyA;) =0=G,(x,y;A,4+)
on the boundary are the boundary conditions for these func-
tions. Comparing Eq. (17) with Eq. (12), the solution for
Eq. (17) follows immediately:

G,(xyAr) = F(xyAr). (19)
To obtain the solution for G, (x,y) in Eq. (18), the differen-
tial equation resulting from use of Eq. (19) in Eq. (17) along
with the differential equation for F{x,y;4) in Eq. (12) can be
used to show that
Gy (xyiAAr) = [F(xpAr) — N F(x;A) /(1 = N,).

(20)

The excess temperature is
T, (xp.2) = [(y = 1)/EpoB | F(xy: A7) P, (2)
_ Toe F(xyiAr) — N, F(x,yA) dP (2)

Po@’ 1-N, dz
2n

The equation of state for the acoustic density fluctu-
ation, Eq. (8), can be combined with the expression for the
acoustic temperature, Eq. (21), to give

o1 (xp.2) = (1/EWy — (¥ — DF(x.pA7))P, (2)
BTo, F(xyAr) — N, F(xp,A) dP, (z)

a)z 1-N, dz
(22)
The first term on the right of Eq. (22) can be used to definea
complex compressibility.

When T, is zero, Eq. (22) can be used to define a com-
plex compressibility which is useful in porous media theory.
Denote by p,(2), F(A;), and F(A) as the average of
p1 (x,3.2), F(x,y;A7) and F(x,y;,A) over the cross section of
the pore. Following the capillary-tube approach of porous
media modeling,'? the complex compressibility is defined as

1 p1(2)

C =— (23)
(zA7) P D)’
and from Eq. (22), with T, =0, is given by
ClzAr) = (1/py) [y = (¥ ~ DF(A7)]. (24)

The cross-sectionally averaged density can then be expressed
as
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= poC(zAL)P, (2)
BT., F(Az) — N, F(A) dP,(2)
@? 1-N, dz

P (2)

(25)

The motivation for averaging the density over the cross sec-
tion of the pore becomes apparent in the next section.

D. Pressure equation in a pore

The continuity equation, Eq. (7), along with the equa-
tion of motion, Eq. (13), and the equation of state for the
density, Eq. (25), can be combined to yield an equation for
the pressure in a pore. When averaging the continuity equa-
tion over the pore area the integral 4 ~'(V_-v_(x,y,2)dx dy
is encountered. Use of the divergence theorem in the x,y
plane gives Y. (xp2)dxdy=A " 'foev,
X (x,9,2)dS = Osince v, (x,y,z) = Oon the perimeter S hav-
ing outward normal n. Consequently, the cross-sectionally
averaged continuity equation for the pore is

. d
— iwp, (2) + = (po (2)0,(2))

_&0(2)7‘()2”:(2) =0’
(26)

where dp, (2)/dz = — B(2) p,(2) T,, was used on the se-
cond form. The v, and dv,/dz terms can be evaluated using

Eq. (13):

= —iwp,(2) +po(2) % v, (2)

(z) d F(A) dP,(2)
— iwp, (2) + 2 = ((z)) :Iiz )
F(,l)
T -—-—0 27
iw o Pl dz 27N

Muitiplying Eq. (27) by iw/F(A) and using Eq. (25) for
p1(2) the equation for pressure is

Po d [ F(A) dP, (z)) dP, (2)
— +2a(A
F(A) dz( dz (Ao
+ k(A,A7)*P, (2) =0, (28)
where .
BT, (F(AT)/F(/I) - 1)
A = , 29
al #{1') 2 l—Np,. (29)
and
2
k(/l,/l,)’—————[y-(y-l)F(,{r)] (30)

¢ F(A)
In the absence of a temperature gradient 7, =0 so
a(A,A;) = 0. The complex wave number in the pore is then
givenby + k, which is the usual form found in porous media
modeling.”-'? The form of the equation for pressure is remin-
iscent of the time analog of a damped harmonic oscillator;
however, here a and k are complex quantities.

E. Specific acoustic impedance and pressure
transiation theorems

Itis appropriate to establish the terminology used in this
section. The specific acoustic impedance of an acoustical me-
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dium is equal to the ratio of the total acoustic pressure and
total particle velocity. For example, in a fluid layer, the total
acoustic pressure is a combination of a downgoing wave and
an upgoing wave. The acoustic impedance is equal to the
ratio of the total acoustic pressure and the total volume velo-
city. For porous media the appropriate boundary conditions
at a surface are continuity of pressure, and continuity of
volume velocity or equivalently continuity of acoustic impe-
dance."? For adiabatic sound, the characteristic or intrinsic
impedance is equal to p, ¢ where p, is the ambient density
and c is the adiabatic sound speed.

To this point, propagation in a single pore of infinite
length has been considered. Consider now a porous sample
[e.g., Fig. 1(b)] consisting of a parallel combination of
many identical single straight pores [e.g., Fig. 1(c) ] of finite
length and denote by N the number of pores per unit area in
the cross section. Define by V,, a bulk particle velocity aver-
aged over unit cross section of porous sample, by 4, the
area of the resonator at the face of the sample, and by 4 the
area of a single pore in the sample. Volume velocityis 4., V.,

=NAA_ v, =QA, v, where (} = N A is the porosity of
the sample. Thus, in the analysis of thermoacoustic elements
with many pores, v, is replaced with V,,/Q inall of the single
pore equations. At boundaries, P, (2) and ¥V, (2) or equiva-
lently 2(z) = P(z)/V,(2) are continuous, where Z(z) is
the specific acoustic impedance.

Rayleigh developed an impedance transiation theorem
for homogeneous fluid layers."* The impedance translation
theorem relates the specific acoustic impedance at one side
of a layer to that at the other. In this manner, one may apply
the theorem as many times as necessary to compute the spe-
cific acoustic impedance at any surface in the layered media.
This transiation theorem is applicable to heat exchangers.
and resonator sections, but is not applicable to the stack be-
cause the physical parameters such as density, sound speed,
etc., depend on z in a continuous manner on account of the
temperature gradient. Impedance and pressure translation
theorems, which take into account the dependence of physi-
cal parameters on position, will be derived for the stack.

The relevant expressions are the average force equation
for a bulk sample from Eq. (13) and v, (2) = ¥, (2)/4,

“Po y,, () = Fidy 22 3D
dz
the definition of specific acoustic impedance,
Z(Z) = P| (2)/V¢ (z)' (32)

and the expression for pressure, Eq. (28). Eliminating P, (2)
and ¥V, (z) from these expressions using a procedure similar
to that of Ref. 14 gives

dZ(z) . Z(2)}
2 = ik(2)Z,, (z)(l - m) + 2a(2)2(z),

(33)

where a(z) and k(2) are given in Egs. (29) and (30) and

Z,, =pyw/[QF(A)k ) (34)
is analogous to the intrinsic or characteristic impedance of a
porous medium.'? The combination of Egs. (31) and (32)
gives
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P (2)
Z(z)
The defined quantities k, a, and Z,, in Eqgs. (33) and (35)
depend on position because of the temperature gradient.

Expressions (33) and (35) are a set of coupled first-
order differential equations which can be readily solved us-
ing numerical techniques. The well-known fourth-order
Runge-Kutta algorithm is a recommended numerical
method. Assume given values of P, (z) and Z(z) at position
z as shown schematically in Fig. 2. Then pressure and speci-
fic acoustic impedance are determined at z — d from use of
the algorithm P, (z—-d)=RK[P (2),2(2)] and
Z(z —d) = RK[Z(2)] where RK is symbolic notation for
the Runge-Kutta algorithm. Thus this method of determin-
ing the pressure and impedance is similar to Rayleigh's im-
pedance translation theorem.

For thermoacoustic elements not having temperature
gradients (such as heat exchangers and sections of the reson-
ator), Rayleigh’s impedance translation theorem'’ can be
written for porous media as

dP, (z)
= ik(2)Z,, 35)
n tk(z (2) (

Z(z—dy = 2. ZZ)costkd) — iZ,,, sin(kd)

int . N . 36)
Z,, cos(kd) — iZ(z)sin(kd)

The pressure translation theorem is

P, (z —d) = P, (2){cos(kd) — i[Z,,,/Z(z) ]sin(kd)}.
(37

In Egs. (36) and (37), k is the complex wave number for
heat exchangers or open sections of the tube and can be de-
termined from the porous media expression, Eq. (30). Use
of these translation theorems will be discussed in Sec. I G.

Knowledge of heat and work flow is central to thermoa-
coustics. In the next section, heat and work flows are eva-
luated for arbitrary pore perimeters and are expressed in
terms of pressure and specific acoustic impedance.

F. Heat and work flow

The time averaged energy flow to second order (sub-
script 2) is*

H,(2) = 0,(2) + W3(2) = Qu (2), (38)

where time-averaged heat flow due to hydrodynamic tran-
sport is

-

F1G. 2. Subsection of a thermoacoustic element, shown here having square
pore capillary tubes. For the stack thermoacoustic element, an arbitrary
number of subsections may be used in spanning the temperature difference
at the ends of the stack.

z-d z
subsectons of 2
thermoacoustic element
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62 (2) =

Re—-f [Poc,v. (x.2) TT(x.p:2)
- BT,v. (xy2) P (2) |dx dy; (39

the heat flow due to conduction down a temperature gra-
dient is
Qlon (Z) = Q Am‘;n T()x + (l - Q)Amxumk TOx;
(40)

and the time-averaged work flow (or power) is
- N A
W,(z) = —z—ﬂ Re %J v, (xy2)P¥(2)dx dy. (41)
A

Here, A, is the cross-sectional area of the resonance tube at
point 2, A is the cross-sectional area of a single pore, Q2 is
porosity, x,,, and ., are the thermal conductivity of the
gas and stack, » indicates complex conjugation, and Re indi-
cates the real part of the expression. The product (2 4, ) is
cross-sectional open area of the tube at position z.

To determine Q2 (z) and W2 (z) use is made of Eq. (21)
for T, (x,y,z) and Eq. (11) for v, (x,y.2) in Egs. (39) and
(40). Resulting expressions are

,..Po * Im J‘F(x,y,l) P (2)

éz(z) =

r—
X | L= F*(x, YP*(2)
(CZPOB (xyAr)PY(2z

_ To, FP(xyAr) =N, F*xyA)
Po’ 1Ny

P,‘,(z))dx dy ;-BTO ;;z (2), (42)
where P, (z) = dP. (z)/dz and

W,(z) = f Exyd) p (2)P3(2)dx dy.
(43)
Recall the definitions 4, = N 7’4 and
F(A) -—f F(x,y;A)dx dy. (44)

The following general integral result, which is proven at the
end of this section,

I, 5—}] F(x,yA)F*(x,yA;)dx dy
A

= [F(AN, + F*(A;)][/(N, + 1), (45)
and the integral that may be evaluated using Eq. (45)

1, 5-/:-‘( F(xy A)F*(x.y:A)dx dy
!

= lim 1, = Re F(4), (46)
!

are necessary to evaluate Eqs. (42) and (43). By making use
of these integrals and the thermodynamic relation
y—1=8%T, ¢?/c,, heat and work flows are
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- Q4 P, (2)P?
Q,(2) =—2 o[lm(—————'z(n rz)
2 Po®@
F*(A,) - F(4 T,
% (4,) ( )) ) IPI:(ZH'
L+, BT, pow
. A
le[F (Ar) + N, F(A)] ' (47)
1 —Nf,,
and
-— 04 P P*
W,(z) = ol lm( 1 (2)PT(2) F(,l)). (48)
2 Po@

Equations (47) and (48) are general expressions for heat
and work flows with the functional form of F(1) dependent
on the particular pore geometry. It can be shown that
Egs.(38), (47), and (48) are the same as Swift’s* equation
(A30) for the special case of parallel plate geometries and
assuming the €, = O (appropriate for gas thermodynamics)
in Swift's theory. To aid in comparing results, note that
F*(A)=1—f and F*(4,) =1 — f, where f, and f, are
used in Swift’s notation.

Since impedance and pressure translation theorems
have been derived for arbitrary locations within the resona-
tor, and specifically for the stack element. it is useful to ex-
press heat and work flows in terms of the specific acoustic
impedance Z(z) and pressure P, (z). From the defimtion of
specific acoustic impedance, Z(2) = P, (2)/[Qr.(2)]. and
Eq. (13) forv.(2).

dP, (2) -P. - fwp, P, (2) . (49)
dz ) QF(A)Z(z)
Heat and work flows are
- A,.. T, P (2)]°
Q_\ (Z) = "W B I I( )l‘
2 1+ N, 22
F*(4
K [Ro:[Z(z)‘(—(—-i + N, )]
F(4)
- 7‘!): pnc,y l
BT, Qw |F(A)|
Im[F*(4 N F(A -
% m[ ( I)+ m ( )]I—BT..WUL
-V,
(50)

and

W,(2) = (4, /D [|P, (DI/1Z(2)F]Re Z(2).  (S1)
In Egs. (50) and (51), P, (z) and Z(2) are global variables
in that they depend on the detailed arrangement of all ele-
ments of the thermoacoustic engine, and F(4) and F(4;)

depend on the local properties of the gas and stack geometry.
The remainder of this section is devoted to proof of Eq.

(45). From Eq. (12), Eq. (45)canbewrittenas
_—f F(x.y'i)( tF*(x A, ))dxdy
(52)

Use of the vector identity for the divergence of the product of
a scalar and a vector and the definition of F(A) give
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2
1, =F(/1)+L R
A i

-t

XJ- V. [Fxy )V F*(xyA,) |dx dy
A

1 R?

A il
V. F*(x A, )dx dy, (53)

f V. Fixpd)
A

where the gradient operator in the x,y plane is V. The diver-
gence theorem in the x,y plane can be applied to the second
integral in Eq. (53):

[ 9 tFara9 Fr i Jaxay
A

= [ {Fend¥ Frxpan ds =0, (54)
S

where 4S5 is an element of perimeter on the pore of arbitrary
shape, and n is the outward normal at the pore wall. The
integral in Eq. (54) is zero by the boundary condition
F(x,y;A) =0for x and yon S. Thus

I =F -+ & fv Flxgid)
! A l/lzr P h
V. F*(x,y;A;)dx dy. (55)

Now, Eq. (12) for F(x,y;A) could have been used in Eq.
(45), rather than for F*(x,y;4 ) as was done to obtain Eq.
(55). Had this been done, Eq. (55) would be
1 R?
I, =F*(4, +-——J V.F(x,
1 (A7) yireh) (x.p5A)
V. F*(x,yAr)dx dy. (56)

Eliminating the common integral between Egs. (55) and
(56) gives Eq. (45).

G. Numerical evaluation of an engine’s performance

The first and simplest situation considered is the fre-
quency response of a nondriven tube below the onset of oscil-
lation. An example based on Fig. 1 (a) will suffice to demon-
strate the procedure for computing the frequency response
using the impedance translation theorem. The acoustic
driver is considered to deliver constant amplitude acoustic
oscillations of radian frequency w of insufficient amplitude
to acoustically stimulate the transport of heat from cold to
hot. An ideal microphone located near the driver is used to
determine the frequency response P, (z = 0,w).

Assume a steady-state equilibrium in which a tempera-
ture gradient exists across the stack as a resuit of heat input
at the hot exchanger and heat removal at the cold exchanger.
The open tube sections of the resonator are taken to be at the
same temperature as the nearest heat exchanger. The am-
bient temperature of the stack will not, in general, vary lin-
early from the cold to hot end due to the temperature depen-
dence of the stack and gas thermal conductivity. The
ambient temperature is assumed known at all points.
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To determine the frequency response, one starts with a
known value of specific acoustic impedance at the rigid end
of the tube in Fig. 1(a). Specific acoustic impedance here
can be evaluated using the expression for the boundary layer
impedance of a rigid wall.'> Use of Eq. (36) determines Z
first at the hot-heat exchanger, open-tube interface, and then
at the stack-hot-heat exchanger interface. The value of Z at
this interface is the starting value for the Runge-Kutta al-
gorithm solution of Egs. (33). Then, use of Eq. (36) deter-
mines Z first at the cold-heat exchanger, open-tube inter-
face, and finally at the position of the acoustic driver. For
known acoustic driver response (e.g., constant displace-
ment, etc. ), the pressure can be determined absolutely at the
driver location using the driver response and the calculated
expression for specific acoustic impedance. It should be not-
ed that all variables in Eqgs. (33) and (36) are to be evaluated
at the local position of the thermoacoustic element or sub-
section. The translation theorem approach for computing
acoustical quantities is a superior way of performing calcula-
tions for resonators containing many thermoacoustic ele-
ments.

The second example considered is evaluation of a ther-
moacoustic refrigerator. Though the typical configuration*
used for a refrigerator has the acoustic driver at the hot (am-
bient) exchanger, the arrangement shown in Fig. 1(a) will
suffice for the present discussion. The driver is assumed to
deliver sufficient acoustic power to the tube that heat is ther-
moacoustically transported from the cold to the ambient
heat exchanger. Experimental and theoretical evidence'® in-
dicates that the ambient temperature distribution in the
stack is, in general, different from that which would occur
for a simple temperature gradient with no acoustic transport
of heat. Indeed the second term of Q, (2) in Eq. (50) has a
temperature gradient multiplied by a factor depending on

- the pressure and impedance that acts as a dynamical coeffi-

cient of thermal conductivity.

Steady-state equilibrium of the refrigerator is achieved
when the ambient temperature throughout the system is
constant. No net heat is absorbed into the walls of the stack
(i.e., heat engine) so H,(z) is a constant in the stack.*'*
Quantities assumed known are the pressure and specific
acoustic impedance at the right end of the tube, the hot-heat
exchanger temperature, and the steady-state constant value
of H, in the stack. The unknown quantities of interest are the
cold-heat exchanger temperature, the power delivered by
the acoustic driver, and the net heat flow from the cold-heat
exchanger. One may compute the Carnot coefficient of per-
formance (COP) from the hot- and cold-heat exchanger
temperatures.* This COP may be compared to the coeffi-
cient of performance computed from the ratio of the net heat
flow from the cold exchanger and the power delivered by the
driver.*

Specific acoustic impedance and pressure at the stack-
hot-heat exchanger interface can be determined from use of
translation theorems in Eqgs. (36) and (37). Then, with 4, a
known constant, Eq. (38} along with Egs. (40), (50), and
(51) are used to solve for 7, (2), the ambient temperature
gradient in the stack. Runge-Kutta integration of the cou-
pled set of three first-order equations, T, (2), P, (z) from
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Eq. (35), and Z(z) from Eq. (33), is used to determine the
ambient temperature distribution T, (2) in the stack and
thus the cold-heat exchanger temperature. Translation theo-
rems can then be used to compute the pressure and imped-
ance elsewhere in the tube. Equation (51) is used to compute
the power delivered by the driver. By energy conservation,
the difference in H, between the cold heat exchanger-stack
interface and the open-tube—cold heat exchanger interface is
the amount of heat flowing out of the cold heat exchanger.
This method of analyzing thermoacoustic refrigerators was
first described in Ref. 15.

ii. HEAT AND WORK FLOWS IN THE SHORT STACK
APPROXIMATION FOR VARIOUS STACK GEOMETRIES

Heat and work flows are compared for stacks having
different pore geometries. In addition to the square pore
stack shown in Fig. 1(b), parallel plate, circular, and equi-
lateral triangular capillary tubes will be considered.

The short stack approximation was used by Swift* to get
an interpretable analytical expression for energy flow. Fig-
ure 3 shows the arrangement for the short stack approxima-
tion. The stack is assumed to be short enough that the empty
tube standing wave is unaffected. The temperature differ-
ence between opposite ends of the stack is assumed to be
much less than the average temperature at the stack center
so that the thermophysical quantities are approximately
constant and are evaluated at the average temperature. Stack
porosity is §.

Pressure and specific acoustic impedance at z are, from
Egs. (36) and (37),

Z(z) = ipoccot{ky(L - 2)], 1)
and
P, (z) = P,(L)cos[ko (L —2)]
=ipocV, cos[ko (L — 2) ] /sin(koL), (58)

where the wave number in the empty tube is k,. Use of Eqgs.
(57) and (58) in the heat flow equation, Eq. (50), gives

- A. P, (L) BT
Qz(z)z res |( ) B 0
2 Poc 1+ N,
sin[2ko (L ~2)] | (Ft(/lr))
X 2 m F(A) :
*
x(l-—l‘ Im[F(Az) + N, F*(A)] )’ (59)
Im[F(A7)F(A)](1 = N,,)
where
L —
‘—z—.l I

. l STACK
V(0,t) = Vo exp-i wt

] |

d

FIG. 3. Arrangement for the short stack approximation.
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__TEBToctan[ko(L-z)]
c, tan{ky (L —2)]
QBT c '

In the inviscid approximation for which N, =0 and
FA) =1,

r

(60)

= Tos

A, P (L) sin (L-2)
| BT, [2k0 ]
2 PoC 2

XImF*(47)(1-T).

Ez(z) =

(61)

Physically, the term Im F*(A ;) is a measure of the dynami-
cal thermal interaction between the gas and solid. Recall
that A = R(powc,/x)'?, where R is twice the ratio of ca-
pillary pore area to pore perimeter. The function F(x,yi47)
is a solution to the partial differential equation, Eq. (12), for
a particular pore geometry and F(4 ) is the average of this
quantity over the pore cross section. According to Eq. (61),
stacks made of pores for which Im F*(4) is a large value
will result in the greatest heat flow.

Work flow is given generaily by Eq. (51). No work is
done in the region to the right of the stack in Fig. 3, which
can be verified readily by using the impedance of Eq. (57) in
Eq. (51). In this region, pressure and velocity have standing
wave phasing. To compute the work done in the stack, use is
made of the impedance translation theorem to get the impe-
dance at the left side of the stack. In the short stack approxi-
mation, k,d=wd /c<1; hence, Z(z — d) can be approxi-
mated from a simple finite difference approximation of Eq.
(33),

__toowd
F(A)QZ(2)
+ idZ(z)k ’F(/l)ﬂ)
Pow
After some manipulation, work flow to first order in k,d is

T B wd
e
XIm F*(A;)cos’ (ko (L — 2)]
x(1 _r Im[F(A;)/F(A)) )
ImF(A-)(1=N,)
+ Wiee (2),
where work due to viscosity is
AL P (L)
Pc‘-'z
x{Im F*(A)/[F(A)F*(4)]}.

Z(z—-d) = Z(z)(l - 2ad

(62)

- A0
W, (2) ===~ P, (L)}

(63)

Wy (2) =

wd sin?[ky (L — 2) ]

(64)
Work flow in the inviscid approximation is
W, (2) = (A, 0/2)P, (L)} (ToB8%wd /pyc,)

xIm F*(A7)cos’ [ko (L —2)](1 = T).
(65)

Equations (63) and (65) are the acoustic power absorbed by
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FIG. 4. (a) Parallel plate, (b) circular, (c) rectangular, and (d) equilateral
triangular capillary tube geometries considered for the short stack approxi-
mation. For example, (c) corresponds to the stack shown in Fig. 1(b).

the stack, with and without gas viscosity, and when these
quantities are negative, it indicates that acoustic power is
being produced by the stack. Stacks made of pores for which
Im F*(A;) is a large value will result in the greatest work
flow.

Work and heat flows are to be compared for the various
pore geometries shown in Fig. 4(a)-(d). In the inviscid
short stack approximation, pores with a large value of
Im F(A)* will have the greatest heat and work flows as indi-
cated by Eqgs. (61) and (65). According to Fig. 5, which
shows the real and imaginary parts of F(4) for the various
pore geometries, the parallel plate geometry has the largest
value of Im F(A)*. The value occurs for 4, = 3.2, which al-

10 T T T T T T T T 3
REAL PART
os} ]
,; — —- circular
’ - = Squafe
w -—— parallel piates
- - - equilateral triangle
---- boundary layer
0.0r J
05 L7 ]'

FIG. 5. Real and imaginary part of the F(A) for parallel plates, circular
pores, square pores, and equilateral triangle pores. Heat and work flows are
proportional to the imaginary part of [ F(4) ] in the short stack approxima-
tion thus indicating the paralle] plate stack is the best choice for optimal
thermoacoustic engines. Also shown is the boundary layer approximation
of F(A) for all pore geometries, valid in the limit A — c0.
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lows one to compute the optimal operating frequency from
the refation 4, = (powc,/x)'’R. In other words, you can
get about 10% more heat and work flows in thermoacoustics
by choosing to make your stack from parallel plates rather
than the other pore geometries. The functional form of F(A)
for the various pore geometries is given below.

Swift* and Rott® have worked out the parallel plate geo-
metry stack. Parallel plates have also been of interest in por-
ous media.'>'* Denote by 2a the separation distance
between plates. To be consistent with the definition of the
characteristic pore radius R as being equal to twice the trans-
verse pore area divided by the pore perimeter, take R = 2a.
The y axis is centered at the midpoint between plates with the
Z axis extending in the longitudinal direction. The function
F(y;A) that satisfies the differential equation for the trans-
verse dependence of the equation of motion, Eq. (12), is

_ cosh(y —id /2 y/a)
cosh(y —id/2)

The average of F(y;A) over the pore is defined as
F(A) =1/2a)SF(y,A) dyand is

F(A) =1—(2/Ay — i)tanh(y — id /2). (67)

Rott has worked out the cylindrical pore' geometry
stack. One type of porous media theory is based upon propa-
gation in a single cylindrical capillary tube.'"'*'® Denote by
a the radius of the cylindrical pore. The characteristic pore
radius for cylindrical pores is R = a. The radial coordinate
of a cylindrical coordinate system centered at the middle of
the circular pore is 7. The function F(74) which satisfies the
differential equation for the transverse dependence of the
equation of motion, Eq. (12), is

F(rA) =1 = Jy(Jidr/a)/Jy (JiR). (68)

The average of F(r,A) over the pore is defined as F(A)
=2/a* §F(rA)rdrandis

FA) =1 — QNI [J, (id) /i, (Vid) ). (69)

Previous work has emphasized thermoacoustic stacks
consisting of parallel plate pores and cylindrical pores. The
basic equations are given here for stacks consisting of rectan-
gular pores. Denote by 2aand 2b the length along the x and y
axes of the rectangular pore cross section. Take the coordin-
ate system origin to be at the lower left corner of the rectan-
gular pore. It is convenient to define a function Y, (1) as

Y . (A) =1+ (im®/AH)[(b°m* + a*n?)/(a + b)?].
(70)
The characteristic transverse dimension equal to twice the
pore area divided by the pore perimeter is
R=2ab/(a+b). (7
A series solution for the function F(x,y;4) which satisfies

the differential equation for the transverse dependence of the
equation of motion, Eq. (12), is"®

FpAd) =1 (66)

16 sin(mmx/2a)sin(nmy/2b)
Fx,pA) = — .
A= T matad
(72)
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In all sums given in this section, /71 and n extend over positive
odd integers. For a rectangular pore the average is defined by
F(A) = 1/(4ab)§F(x,y:A)dx dy, where the integral extends
over the entire cross section of the pore. Then,

64

1
F(A) = — _—
¢ o .....Zo« m*n*Y,., (1)

(73)
The function F(x.y;4) in Eq. (17) was obtained from a solu-
tion by Han'” for the same differential equation as Eq. (12).

Equilateral triangular pores have been recently investi-
gated by Stinson.'* The pore geometry is shown in Fig. 4(d).
The characteristic dimension is R = a/3"? and

2 coth(u‘/__i)+ 4
J=ii 2 3432

In the boundary layer approximation appropriate for all
pore geometries in the limit 1 — o,

FAy=1=(2/) 0+ =1—=(8/R)(1 +1), (75)

where § is the viscous or thermal boundary layer thickness
and R is twice the pore area divided by the pore perimeter,
Equation (75) can easily be dzrived from the large A limit of
Egs. (67), (69), or (74). Physically, 25/R is the area of the
boundary layer divided by the pore cross-sectional area.
Therefore, it is expected and noteworthy that pores with the
same A have the same complex wave number in the wide-
tube limit; i.e.,, A — oo."* Figure 5 gives a graphical illustra-
tion as to when the boundary layer approximation is useful
for a particular pore geometry. It also illustrates why it was
necessary for Rott® to improve upon the boundary-layer
theory of thermoacoustics.

F(A)=1- (74)

lil. CONCLUSION

Linear thermoacoustics for gas-filled stacks has been re-
duced to calculation of a single function F. The function
F(x,y;,A) gives the transverse variation of the longitudinal
particle velocity v, (x,»,z). It satisfies the partial differential
equation, Eq. (12), and the boundary condition
F(x,y,A) = Ofor x and y on the pore perimeter. The average
of F(x,y;A) over the pore cross section is F(4). The para-
meter A is proportional to the ratio of the pore hydraulic
radius and the viscous boundary layer thickness that wouid
be appropriate for a flat pore boundary. Similarly, 4 is pro-
portional to the ratio of pore hydraulic radius and the ther-
mal boundary layer thickness. The form of F(4) depends on
pore geometry. All first-order acoustical field quantities
(Sec. I A-D) and the second order energy flux (Sec. I F)
can be evaluated using this function.

The general framework was used in Sec. I to investigate
the optimal choice of capillary tube geometry for stacks.
Heat and work flows evaluated in the inviscid, short stack
approximation, are approximately 10% greater for the par-
allel plate stack geometry than for the circular, square, and
equilateral-triangle pore geometries.

Impedance and pressure translation theorems were de-
veloped in Sec. I E for determining these quantities at all

3237 J. Acoust. Soc. Am., Vol. 90, No. 8, December 1991

L I R T .S

points in the resonator shown in Fig. 1(a). With this ap-
proach, analysis of complicated arrangements of thermoa-
coustic elements can be evaluated readily and in a unified
manner. Work and heat flows were expressed in terms of
specific acoustic impedance and pressure to take advantage
of these theorems.

Finaily, the function F(A) is also the key element of
capillary-pore based porous media models.'>'* Factors are
used in these models to scale properties of random media to
circular pores. Thus the scaling factors and methodology of
porous media modeling can be readily adapted to be useful in
thermoacoustics. After all, thermoacoustic elements are
nothing more than sections of porous media, with the added
richness of ambient temperature gradients.
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Sound propagation in gas-filled capillary-tube-type porous media was investigated. The
capillary tubes were taken to be nominally straight with very small pores in the walls of the
capillary tubes. The complex wave number and the characteristic impedance of such media
were evaluated. Application to ceramic samples having capillary pores with square cross
sections and porous walls is developed as an explanation for the anomalous tortuosity factor
previously inferred for this material. Specific acoustic impedance (SAI) measurements were
performed for rigid-backed square pore ceramic media having finite wall porosity. It is shown
that phase velocity is decreased, attenuation is increased, and characteristic impedance is
decreased by finite wall porosity. SAI measurements were also performed after the wall pores
were filled with water. These measurements agree favorably with the porous wall and
nonporous wall theories, respectively. This work provides a model for the acoustical properties
of gas-filled monolithic catalyst supports of which the square pore ceramic media is an

example.
PACS numbers: 43.28.Fp, 43.50.Vt, 43.20.Mv

INTRODUCTION

Theory'? and experiments’ were recently reported for
sound propagation in porous media consisting of straight
capillary tubes having square cross sections. The experimen-
tal work was aimed at testing the efficacy of first-principle
models for predicting the acoustical properties of porous me-
dia with well-defined geometries. The measured complex
wave number' was approximately 10% larger than the
values predicted from theory assuming nonporous walls.
However, the ceramic porous sample used actually has walls
that are porous, as indicated schematically in Fig. {(a) and
(b). A qualitative explanation for the discrepancy was that
the finite porosity of the ceramic square pore wall should
increase the bulk compressibility of air in the porous media
and hence increase the complex wave number. This de-
creases the phase velocity and increases the attenuation, as
was observed in the measurements. Effects of wall pores on
propagation in porous media were also qualitatively dis-
cussed earlier.’

In this paper, the effects of finite wall porosity are in-
cluded in the theory for sound propagation in a porous me-
dia consisting of nominally straight capillary tubes with
much smaller pores in the capillary tube walls, The theory is
cast in a sufficiently general form that it is useful for capillary
tubes having geometries other than squares. Specific acous-
tic impedance (SAI) measurements of a rigid-backed cera-
mic sample and a previous measurement of the complex
wave number' compare favorably with the porous-wall por-
ous media theory. Wall pores were filled with water and the
SA] measurements were repeated. These measurements

* This work was presented at the 120th Meeting of the Acoustical Society of
Americs {J. Acoust. Soc. Am. Suppl. 1 88, S143 (1990)}.
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agree favorably with nonporous wall theory. The theory
shows that the complex wave number is increased and the
characteristic impedance is decregsed on account of finite
wall porosity.

Finite wall impedance concepts have been used in relat-
ed work. For a sufficiently wide tube, absorption of the plane
wave mode can be accounted for using the expression for
boundary layer impedance as a boundary condition at the
tube wall.* Similarly, sound absorption in ducts with ab-
sorbing liners at the duct wall can be modeled using the liner
impedance as a boundary condition.® These concepts also
find use in bore hole measurements in geophysics.®

The ceramics used in this investigation are an example
of a monolithic catalyst support.” Several manufacturers use
these ceramics in automobile catalytic converters. Physical
properties, such as the ability to hold coatings and low ther-
mal conductivity, can be obtained by adjusting the ceramic
wall porosity.” A combustible material that burns out dur-
ing the final sintering is added to the raw ceramic mixture to
increase the porosity for some applications.” The theory de-
veloped here provides a model for the low-frequency acous-
tical properties of gas-filled monolithic catalyst supports.
These ceramics may be useful as low-frequency sound ab-
sorbers. They may aiso be useful in thermoacoustic heat en-
gines due to their low thermal conductivity, regular ge-
ometry, wide spread availability, and low cost.

1. PROPAGATION IN POROUS WALL POROUS MEDIA
A. Assumptions

In ideal acoustics an often used approximation is that
sound wave propagation is adiabatic and that the fluid is
inviscid. At boundaries it is sufficient to assume continuity
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of pressure and the normal component of particle velocity.
Ideal acoustics boundary conditions are not sufficient to de-
scribe sound propagation in porous media for which the so-
lid and fluid volumes are intermingled and are on the same
order. Account must be taken of momentum and energy
transport phenomena, viscosity and thermal conductivity,
which occur as a result of velocity and temperature gra-
dients. In viscous fluids it is usually a good assumption that
the total particle velocity is zero at a rigid stationary boun-
dary. For boundaries such as solid-gas interfaces compres-
sion and expansion of gas can result in transport of heat to
and from the solid for parcels of gas sufficiently close to the
walls. At boundaries gas and solid temperatures are assumed
to be the same since in solids the heat capacity is usually
much greater than that of the gas. Any local heating of the
solid due to the gas is diffused throughout the solid since it is
generally a much better heat conductor than the gas.

Dimensionless numbers indicate different regimes of
disturbances in porous media. Denote by p,, ¢,, 77, and « the
gas properties of ambient density, constant pressure heat ca-
pacity per unit mass, viscosity, and thermal conductivity. A
measure of the relative magnitude of viscous and thermal
diffusion in the gas is given by the Prandtl number,
Npg, = 7¢,/x. Gas viscous and thermal penetration depths
for oscillations of radian frequency w are §, = (29/p,)'"?
and 8, = (2/powc,)'* = 8,/N |, respectively. Denote
by R a characteristic transverse pore dimension, e.g., the
pore radius for circular pores. A dimensionless shear wave
number can be defined as 4 = 2'2R /8, = R(p,w/7)' . Si-
milarly defined for thermal diffusion is a thermal distur-
bance number 4, = 2"2R /5, = R(powe,/x)"* = AN 2.
For A <1, the magnitude of particle velocity in a pore is
much less than that predicted by (inviscid) ideal acoustics
and has nearly a quadratic dependence on the transverse
coordinates as does dc flow through a capillary tube (Poi-
seuille low). For A > 1, the magnitude of particle velocity
closely matches that predicted by ideal acoustics except in a
thin boundary layer of thickness §, in which particle velo-
city changes rapidly to zero at the pore wall. For 1, €1 the
gas temperature is the same as the wall temperature and
density changes in the gas occur isothermally rather than
adiabatically. For 4,3 1 density changes are adiabatic ex-
cept in the thin boundary layer §, surrounding the pore wall
over which density changes go from adiabatic to isothermal.
A good measure of the characteristic transverse pore dimen-
sion is R = twice the transverse pore area/pore perimeter.
For example, the characteristic dimension is R = a for cir-
cular pores of radius a and for square pores of semiwidth a.
This definition of R is twice the hydraulic radius.

Figure 1(a) and (b) represent the model for porous wall
porous media. Darkened regions in these figures are the gas-
filled portions of the media and the surrounding matrix is
taken to be rigid. Plane waves are taken to be propagating in
the z direction. Two types of pores are to be distinguished.
The main pores are shown to be square in cross section,
though this is not necessary for the theory developed below.
The walls of the main pores have pores or holes of much
smaller radii in them, and the wall pores are of average
length d,,, as shown in Fig. 1(a). Main pores are not con-
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FIG. 1. (a) Single main pore with wall pores of length d,,. (b) Arrangement
of main pores in the porous sample model. Wall pores are not taken to con-
nect adjacent main pores. Air filled regions in (a) and (b) are dark.

nected by wall pores, as indicated in Fig. 1(b). Transverse
dimensions in the main pore are given by coordinates (x.y),
as indicated in Fig. 1(a).

The central assumptions are now given concerning os-
cillatory motion and condensation of gas in the wall pores.
At the frequencies considered, particle velocity in the wall
pores is much less than it would be for ideal acoustics as a
result of gas viscosity and the small radii of wall pores. Con-
densation of gas in the wall pores is taken to occur isother-
mally at the same temperature as the solid matrix of the
porous media. In terms of the dimensionless parameters,
these assumptionsared,, < 1and 4 1, < 1, where subscript w
refers to wall pores.

The central assumption concerning pressure in the main
pore is that it is only a function of the longitudinal coordin-
ate z, not the transverse coordinates.® One justification of
this assumption is that frequencies considered are much less
than the cutoff frequency for radial modes in the main pore.
This is the standard assumption for the pressure in nonpor-
ous wall porous media theory.® A second argument for this
assumption is that the wall impedance is much greater than
the characteristic impedance in the main pore and the pore
diameter is much less than the acoustic wavelength.
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The useful range of the porous-wall theory can be stated
most generally in terms of the dimensionless numbers relat-
ing pore radius and the frequency-dependent viscous pene-
tration depth. This model should be useful for porous media
with main pores such that 4> 1 and wall pores such that
A, < 1. These criteria were not derived from more general
theory but appear to be consistent with the assumptions
made above. In the experiments discussed below 4 <4 < 18
and 4, was estimated to be in the range 0 <4, < 1.2. The
frequencies considered were in the range 75-1300 Hz. Wall
pore diameters ranged up to = 100 #m, and the main pore
width was 1.54 mm. Further discussion is given in Sec. III.

B. Analysia for porous wall porous media

Consequences of the assumptions given above on the
linear acoustic equations in porous wall porous media are
now developed. Anexp( — iwt) sign convention will be used
for constant frequency oscillations. In the frequency do-
main, linear acoustic quantities in a single main pore are
transverse and longitudinal components of particle velocity,
v(xp.2) = v (x,p.2) + v, (x,),2)Z, pressure, p(z), density,
p(x,9.2), and temperature, 7(x,y,z). Ambient quantities are
density, p,, temperature, 7,, and pressure, p,. The trans-
verse velocity has been computed for circular pores and non-
porous walls by Tijdeman.'®

A general result is established first. In the geometry of a
single main pore in Fig. 1(a), the continuity equation is

v, (x,p.2)

+ 0oV, v, (x =0,
2 Po (xp,2)

(hH

where V, =d/dxx +d/dyy is the transverse gradient
operator. Averaging Eq. (1) over the cross section of an
arbitrarily shaped main pore, as shown in Fig. 2,

- m’P(Xy}’,Z) +Po

CROSS SECTION OF

T ~~—_ARBITRARILY SHAPED

MAIN PQRE

FIG. 2. Arbitrarily shaped cross section of a general main pore having peri-
meter S and area A. The outward normal is n(x,y.2) and v (x,p,2) is the
tangential component of particle velocity. For main pores having square
cross sections, as in Fig. [(a), the cross section would be a square. Wail
pores (not shown) are assumed to skirt the main pore.
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dv,(2)

+& f Vv, (xp.2)dxdy =0,

A Ja

2)

where p(z) =A4 ~‘fp(xpz)dxdy and v,(z) =A4 ~'[v,
X (x,y,2)dx dy are the cross-sectionally averaged acoustic
density and z component of particle velocity for a main pore
of cross-sectional area A, e.g., the square area in Fig. 1(a).
Application to Eq. (2) of the divergence theorem in the
(x,y) plane gives
dv,(z)

dz

— iwp(z) +po

— iwp(2) + po +’f—:—f n(xy)v,(x,y2)dS =0,
£

3)

with S being the perimeter of a main pore having outward
unit normal n and dS an element of perimeter. In the stan-
dard approach to capillary-tube-based porous models, the
main pore wall is both rigid and nonporous and the boun-
dary condition v, = 0 at the pore wall significantly simpli-
fies the pore-averaged continuity equation to
— iwp(2) + po dv,(2)/dz =0.

According to Eq. (3) average gas density in the main
pore changes in time due to compression of the gas and as a
result of mass flux pyn(x,p)+v, (x,p,2) into the pore wall. A
reasonable assumption is that the porous wall radius of cur-
vature in a transverse plane is much greater than typical wall
pore diameters. Under this assumption the porous wall can
be taken locally to be a flat surface having a specific acoustic
impedance Z,,. In this averaged sense continuity of the nor-
mal component of v, (Fig. 2 shows the normal) at the main-
pore porous-wall boundary is taken to be

n(x,p)v. (xp2) =p(2)/Z,. (4)
Here p(2)/Z,, is the longitudinal particle velocity in the wall
pores evaluated at the interface of the main pore and en-
trance to the wall pores. As discussed above, p(z) is taken to
be constant in a given cross section of 2 main pore. Use of the
boundary condition, Eq. (4), in the continuity equation, Eq.
(3), gives

dvz (2) PoP(z) i _
dz zZ, A

0, (3

— iwp(2) + po

where S is the perimeter of the arbitrarily shaped main pore,
e.g., the square in Fig. 1(a).

Other relations among the acoustic quantities are pro-
vided by momentum, state, and heat flow equations. The z
component of the momentum equation in a single main pore
isl .

_dp(2)

+ V2, (x,9.2). 6
2z 77 $Z) (6)

— lwpov, (x.p,2) =

The boundary condition for Eq. (6) is v, (x,,.2) =0 for x
and y on the nominal location of the main pore boundary.
This boundary condition assumes that the transverse particle
velocity in the wall pores is zero since wall pore diameters are
much less than the viscous penetration depth. The solution
of Eq. (6), when averaged over the cross section of the main
pore, as was done above for the continuity equation, is writ-
ten symbolically as'
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iwpyv, (2) =F(A)%, @)

where F(A1) is a complex pore-geometry-dependent function
that defines a complex density p,/F(A) for gas in the main
pore. Recall that A = R(p,w/7)"/?, where R = 24 /S. For
main pores having rectangular cross sections of semiwidths
aand b, R =2ab/(a+b),

Yo () =1 + (ir?/A2)[(b’m? + a*n?)/(a + b)?],
(8)

and the function F(4) is'?

64 1

F(A) = Mzo“ Y 9
The odd integers m and 7 in Eq. (9) range from 1 to «. Note
that A and hence F(A) is a function of a/b for rectangular
pores.

Density changes in the wall pores are taken to occur
isothermally, as discussed above. Excess temperature goes to
zero at the nominal location of the main pore boundary,
which is the usual boundary condition. The heat equation
and equation of state can be combined to obtain an expres-
sion for the excess density in the main pore.' Averaging the
excess density over the pore cross section gives'

p2) ={[r— (r = DF(47)])/P}p(2), (10)
where ¢ is the adiabatic sound speed, ¥ is the ratio of specific
heats, and F(4;) is given by Eq. (9) for rectangular pores
and argument 4 = N }?4. For wide main pores such that
Ar= o, F(A;) =1 so that compressions are adiabatic and
p(2) = p(z)/*. For narrow main pores such that 4,-0,
F(A;)-0 so that compressions are isothermal and
p(2) = p(2)/(c*/y). Use of Eq. (10) in the averaged contin-
uity equation, Eq. (5), gives

fYy=(r=DF(;) 2ip, )
w( e + Rz, )PP
dv, (2)

where R = 24 /S was used.

The model is shown in Fig. 1(b) for abulk porous media
consisting of N main pores per unit area, each having cross-
sectional area 4. The area A and porosity (2 = N A are to be
measured, assuming that no wall pores are present. For com-
pleteness, allow each main pore to also have a tortuosity ¢. In
the present context, g allows for the possibility of a gentle
longitudinal curvature of each main pore, or a tilt angle 8 of
the main pore axis for which ¢ = 1/cos 6. Bulk acoustical
equations for porous media are obtained by using
V., (z) = Qu,(z)/q and by replacing dz with ¢ dz.' Here
V., (2) is a bulk particle velocity averaged over unit cross
section of porous sample. Resulting buik equations are from

Eq. (7),
wpe LV (2) = F(d) B2 12
wpon..(z) F()qdz’ (12)
and from Eq. (11),
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]

. 7—(7"“”7('11')‘ Z‘Po)
— i +
( é RaZ, (@)
dv,(z)
q 2
————.——:0. 13
+p.,0 p (13)

Multiplying Eq. (13) by (iw), takingd /qdzof Eq. (12), and
eliminating ¥, (z) from the resulting equations gives an
equation for pressure waves of constant frequency,
d?p(z) 0 Y= (y—1DF(y)
dz? (c/q)? F4)
c 2
x{1+

( Y= (y~ DF(4,) oRE,
where §, = Z,,/p,c is the normalized wall specific acoustic
impedance.

The complex wave number and characteristic impe-
dance of porous wall porous media are obtained from Eq.
(14) and Eq. (12). Assuming p < exp(ikz), Eq. (14) yields
a dispersion relation for the complex wave number &,

k= + k¢,
where

ko = [0/ (/W7 = (r = DFGA]/ECA). (16)

is the propagation constant for nonporous main-pore walls
and

=l+c¢/[yv—(y=DF(A7)J(i/wRS,), (17)

where a binomial expansion for the square root was applied
because§, » 1. From Eq. (12) the normalized characteristic
impedance § = Z /p, ¢ of the material is

§=0a6 "

where

;np

)p(z) =0, (14)

(15)

(18)

1 q 1

= < . (19)
FO)'? Q@ [y =(y=DFA,)

is the impedance for nonporous main-pore walls' and

=l ~c/[r— (r = DOFA)|(/0RS,).  (20)
Recall that £, is the normalized wall specific acoustic impe-
dance.

The model illustrated in Fig. 1(a) and (b) assumes walil
pores are of length d, and terminate in the pore wall. A
reasonable model for wall impedance is a rigid-backed layer
model with§,, = i§,,, cot(k,d,) =i,/ (k d,), where the
cotangent approximation applies when k,d, €1, k_ is the
propagation constant for the wall pores, and {_,, is the nor-
malized characteristic impedance of the wall. An impedance
model for sufficiently low frequency and wall pores with
geometries such that 4, <1 has k, = g, @(8i¥)"%/(cd,)
and &, =g, (8i/y)'*/(Q,4,), where g, and Q, are the
tortuosity of wall pores and the porosity of the wall.!' Wall
porosity 2, is defined as the open volume in the walls divid-
ed by the total volume of the walls. Combining these expres-
sions gives a wall-pore normalized specific acoustic impe-
dance that is independent of 4,

o =ic/oyQ d,.
Use of Eq. (21) in Eq. (17) gives

N
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E=1+ 14 2.4,
y—(r—1DFA;) R
y ﬂ-,-—ﬂ

=1

; (22)
y—(r—=1DFA4;) 20

where in the second form, the total porosity €1 is the total

open volume (wall-pore volume plus main pore volume)

divided the total sample volume. Equation (22) was ob-

tained using the relation

Qr=Q(1 +2Q,d,/R). (23)

The total porosity 2, can be obtained from Eq. (23) by
measuring  and R, and by optimizing agreement between
theory and experiment to obtain Q, and 4. This is dis-
cussed further in Sec. III.

For main pores large enough that A,>1 so that
F(A7) =1, £> 1 is a real quantity. Consequences of £> |
are seen in Eq. (15) and the definition &k = w/c,, + ia,
where ¢, is the phase velocity and a is the attenuation con-
stant. Attenuation is increased by §> | and phase velocity
decreased, and by Eq. (18) the characteristic impedance is
decreased. The factor y/[¥ — (y — 1)F(4) ] may be attri-
buted to the difference in compressibility of gas in the main
pore and much smaller wall pores. Acoustical methods for
determining the ratio (2 — Q)/Q occurring in Eq. (22)
may be of interest in nondestructive evaluation of materials.

The normalized specific acoustic impedance £,,, of a ri-
gid-backed square pore sample is

$ =i cot(kL), (24)
where L is its length. Calculations of ¢, will be compared
with measurements in Sec. III. It is noteworthy that this
measurement is sensitive to both the characteristic impe-

dance ¢ and the complex wave number k of the material
when absorption over length 2L is not severe.

Il. SPECIFIC ACOUSTIC IMPEDANCE MEASUREMENTS

The ceramic porous material has straight tubes with
square cross sections, as shown schematically in Fig. 3. The

O-RING
EPOXY
SQUARE PORE
CERAMIC SAMPLE
ALUMINUM DISK ALUMINUM DISK
RIGID TERMINATION FLANGE

FIG. 3. Arrangement of ceramic sample and aluminum support disks.
Threaded rod standoffs were used between the aluminum disks to sdd struc-
tural support. Impedance measurements were made with the ceramic sam-
ple attached to the impedance tube in Fig. 5.

3303 J. Acoust. Soc. Am,, Vol. 90, No. 8, December 1991

side of the ceramic facing the impedance tube was flush
mounted into an aluminum disk of thickness 1.27 cm. An-
other solid aluminum disk of the same thickness had a hole
of depth 0.32 cm and diameter of 14.6 cm machined into it so
that the ceramic could be attached. The ceramic and alu-
minum pieces were attached using epoxy. The solid alu-
minum disk acts as a rigid termination for the sample. An O
ring was machined into the open disk to form a seal with the
impedance tube. Threaded rod not shown in Fig. 3 was bolt-
ed between the aluminum pieces to add structural support.
The outer ceramic surface was sealed against leaks by cover-
ing it with polyurethane.

Specific acoustic impedance (SAI) measurements were
made on a square pore ceramic sample having a nominal cell
density of C=200 pores/in.’, average square pore
semiwidth g of 0.768 mm + 0.01 mm, and length L of 49.5
cm. Porosity associated with main pores using
Q = C(2a)* = 73%. This value of porosity was computed
assuming nonporous walls, as dictated by the theory in Sec.
I. Wall thickness was =0.27 mm. The value ¢ = 0.77 mm
was used in the calculations. The uncertainty in 2 was com-
puted from the standard error of 25 measurements.

After SAI measurements were made on the dry, porous
wall sample, the ceramic was flooded with water. Strong
molecular attraction between water molecules and the cera-
mic held water in the small volumes of the wall pores. How-
ever, water in the main pores was easily removed by shaking
the sample. Thus a three phase (water, ceramic, and air)
sample was produced. Because of the huge impedance mis-
match though, the combination of wall-pore water and cera-
mic sample wall are considered a rigid matrix. This combin-
ation gave us an ideal porous sample consisting of straight,
square-pore capillaries with nonporous walls. SAI measure-
ments were also made on this three-phase sample.

Figure 4 shows a representative optical microscope pho-
tograph from several that were taken of the pore walls.

1mm .

FIG. 4. Representative optical microscope photograph of the porous cera-
mic wall ’
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Clearly the ceramic sample has finite wall porosity. The
larger pore diameters were estimated to be 100 um. The in-
terior wall pore volume is roughly spherically shaped,
though the walls are not smooth. Wall pores with small dia-
meters in Fig. 4 often open to larger diameter cavities in the
ceramic walls. Wall porosity was estimated tobe Q, = 49%
by maximizing agreement between the experimental impe-
dance measurement and the theoretical expression, which is
a function of {1,,. An estimate of d, = 100 um, the depth of
wall pores, as shown schematically in Fig. 1(a), was made
using a profilcometer. The estimated values of 2, and d,,
will be used in Sec. III to compute the total sample porosity
from use of Eq. (23). It appeared that wall pores do not
connect by air adjacent main pores.

An impedance tube shown schematically in Fig. 5 was
used to measure the specific acoustic impedance of a rigid-
backed ceramic sample shown schematically in Fig. 3. Im-
pedance tube design criteria and theory of operation are de-
scribed elsewhere.'>'? A dynamic signal analyzer was used
in a swept sine mode to drive a power amplifier that was
connected to the Altec driver. Denote by H,; the transfer
function between microphones M1 and M2 in Fig. 5. The
analyzer was also used to measure #,,. The frequency range
of interest was 75-1300 Hz, and the cutoff frequency for
radial modes in the tube was approximately 1375 Hz. The
analyzer was interfaced with a minicomputer to downioad
H,, for the impedance calculation. A transfer function H ;, is
measured and the measurement is repeated with the micro-
phones reversed, obtaining H {;. Since the transfer function
used in the calculation is H,, = (H |,/H},)'? the frequency
response of each microphone cancels so that one need not be
overly concerned with the microphone frequency response
or calibration.

iIl. DISCUSSION OF EXPERIMENTAL
AND CALCULATED COMPLEX WAVE NUMBER
AND SPECIFIC ACOUSTIC IMPEDANCE

The complex wave number for C = 200 pores/in.? ce-
ramic samples was previously measured using a time domain
technique. Experimental resuits are shown in Fig. 6(a) and
(b) for phase velocity and attenuation constant. Also shown
are theoretical results for porous-wall porous media theory
[Egs. (15) and (22)] and nonporous-wall theory [Eq.
(16) ]. Porous-wall theory results agree much more favor-
ably with experimental points than the nonporous-wall theo-
ry. Porous-wall theory underestimates the attenuation con-

30 em-10 cmfe 80 cm o| conE
P 1 HORN
M1 M2
IMPEDANCE TUBE: ID = 14.6 CM
ALTEC
SAMPLE COMPRESSIONAL
END DRIVER

FIG. 5. Impedance tube geometry.
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FIG. 6. (a) Attenuation constant and (b) phase velocity measurements and
theory. The solid symbols are experimental resuits for ceramic square pore
samples. Error bars were estimated to be twice the symbol sizein (a) and a
representative error bar is shown in (b). Solid lines and broken lines are
porous-wall and nonporous-wall porous-media theory.

stant though, particularly at higher frequencies. In previous
work it was noted that use of an anomalous tortuosity
¢ = 1.1 [in the nonporous-wall theory Eq. (16) ] was neces-
sary to obtain satisfactory agreement among theoretical and
measured values of the complex wave number. This value of
tortuosity is anomalous since porous media consisting of
straight, rigid, nonporous capillary tubes, which was the
model being used, has ¢ = 1. The slightly frequency-depen-
dent complex factor computed from Eq. (22) isé=1.1. This
theoretical justification for multiplying the complex wave
number by a nonunity factor £, even though the capillary
tubes are straight, is a main resuit of this paper.
Measured and caiculated specific acoustic impedance

are shown in Fig. 7, with the real part in Fig. 7(a) and the
imaginary part in Fig. 7(b). The theoretical expression for a
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FIG. 7. (a) Real and (b) imaginary specific acoustic impedance measure-
ments and theory. Experimental measurements are given by small squares,
which nearly form a continuous curve. Measurements with the wall pores
filled with water are marked with large, solid squares. These messurements
agree favorably with the nonporous-wall theory given by the dashed lines.
Measurements and theory for porous walls are marked with open squares
and solid lines, respectively.

rigid-backed sample is given by Eq. (24). Impedance was
normalized by the characteristic impedance of air. Con-
structive and destructive interference of downgoing and up-
going waves in the ceramic sample results in the obvious
structure on the impedance curves. Nonporous-wall theory
was computed from the use of Eq. (19), and porous-wall
theory from Eq. (18) and Eq. (22). With the wall pores
filled with water, SAI measurements agree favorably with
nonporous-wall theory. When the wall pores are open SAI
measurements agree favorably with porous wall theory. The
location of peaks and minima agree favorably; however, the
computed impedance is less than the measured impedance
near minima of the real part. Part of this discrepancy may be
attributed to boundary layer absorption on the rigid termin-
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ation of the ceramic sample: This is not accounted for in Eq.
(24). Porous-wall theory gives an impedance greater than
the measured impedance for higher frequencies. This is con-
sistent with phase velocity and attenuation measurements
shown in Fig. 6, since the frequency of impedance maxima
and minima is governed primarily by the phase velocity and
the impedance magnitude is governed by the attenuation
constant. The assumptions made in Sec. I A for developing
the porous-wall porous-media theory are less valid for
higher frequencies, since 4, = 1.2.

Wall porosity (), was used as an adjustable parameter
in Eq. (22) to obtain the theoretical wall porosity SAI
curves in Fig. 7(a) and (b). Champoux and Stinson mea-
sured,'* using an air-based system,'® the total porosity Q,
of a ceramic sample of the same type used in our measure-
ments. Use of Eq. (23) gives 0, = 0.82, which is in accepta-
ble agreement with the value Q; = 0.87 + 0.05 determined
by Champoux and Stinson. :

In previous work, we referred to the effects of finite wall
porosity as an “anomalous tortuosity factor.” This notion is
incorrect, for by Eq. (19), the characteristic impedance is
proportional to tortuosity g. Thus characteristic impedance
should increase if finite wall porosity simply caused the tor-
tuosity to increase. Finite wall porosity increases the bulk
compressibility of gas in the pores. Since the complex wave
number (characteristic impedance) are proportional (in-
versely proportional) to the square root of compressibility,
they increase (decrease) on account of finite wall porosity,
as shown quantitatively in Eq. (15) {Eq. (18)].

IV. CONCLUSION

A theory has been developed for propagation in capil-
lary-tube-type porous media in which the capillary tubes
have small pores in the walls. The wall pores were modeled
as a thin-layered impedance at the main pore wall. The wall
impedance was taken to be reactive with the reactance due to
small wall pores. Phase velocity is decreased, attenuation is
increased, and characteristic impedance is decreased on ac-
count of finite wall porosity. Specific acoustic impedance
measurements on a ceramic sample having both porous and
nonporous walls agree favorably with the calculated values
for these two cases. This model may be useful for sound
propagation in soils having large cracks and for evaluating
the walls of tubes that are susceptible to damage by pitting.
This work offers an explanation for the anomalous tortuo-
sity factor, which was used previously' for the square pore
ceramic samples.
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Study of a thermoacoustic prime mover below onset of self-

oscillation
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The frequency response of a thermoacoustic prime mover has been measured as a function of
the mean gas pressure and temperature gradient across the prime mover stack. The quality
factor @ and resonance frequency can be determined from the response. As the temperature
gradient is increased, the Q increases, indicating a decrease in attenuation across the stack. At
sufficiently large temperature differences ( ~ 300 K), the resonator goes into self-oscillation,
indicating negative attenuation. Measurements are reported for helium and argon at pressures
ranging from 170-500 kPa and temperature gradients ranging from zero to that required for
onset of self-oscillation. The results are explained in terms of a counterpropagating, plane-wave
analysis, based on techniques commonly used in porous media investigations. In general, the
predictions of the analysis are in good agreement with experiment. The predictions of Q and
the change in resonance frequency with mean gas pressure are within approximately 5% and
0.4% of measured values for the no temperature gradient cases. In the cases where
temperature gradients are present, the agreement is quite good for the two highest mean
pressures reported (370 and 500 kPa). There are some noticeabie discrepancies at the lowest
pressure (170 kPa). The reasons for these discrepancies are unknown.

PACS numbers: 43.25.Vt, 43.35.Ud

INTRODUCTION

Swift' and others>® have developed theories that can be
used to predict the onset of self-oscillation and the quality
factor Q of a thermoacoustic prime mover. Their models are
based on a thermodynamic approach that considers energy
transfer and dissipation on the exposed surfaces. This treat-
ment agrees with experimental results and includes all the
applicable physics. It does have one disadvantage. As formu-
lated, it is not simple to transfer extensive research of the
acoustic properties of porous materials to performance pre-
dictions of thermoacoustic devices. One goal of this article is
to develop such a formalism, which will be especially attrac-
tive when considering the use of alternate geometries in the
prime mover stack.

In the following, we apply the standard treatment of
acoustic waves in porous media and propagation in a tube
with multiple boundaries to predictions of prime mover per-
formance. Except for one equation for heat flow in the pres-
ence of a temperature gradient, all equations and their de-
scription can be found in standard acoustics textbooks.* As
one might expect, all the needed expressions without a tem-
perature gradient can be found in the works of Lord Ray-
leigh.’

I. EXPERIMENTAL APPARATUS AND PROCEDURE

We measured the frequency response of a thermoacous-
tic prime mover as a function of the mean gas pressure and

*' Permanent address: Devartment of Physics, University of Mississippi,
University, MS 38677.

"' Permanent address: Chung-Cheng Inst. of Technology, Taoyuan 33509,
Taiwan, R.O.C.
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temperature gradient across the prime mover stack. The
quality factor Q and resonance frequency can be determined
from the response. The temperature gradients ranged from
zero to that required for the onset of self-oscillation. To gain
confidence in the measurement technique, we first measured
the response of two simpler resonator configurations: an
empty, rigidly terminated tube, and the empty tube plus the
ambient heat exchanger. These configurations, and that of
the prime mover, are discussed in Sec. I A. Temperature
control and measurement are discussed in Sec. I B, followed
by a discussion of the data acquisition procedure in Sec. I C.

A. Resonator configurations

The three different resonator configurations are the
empty, rigidly terminated resonant tube; the empty tube plus
the ambient heat exchanger; and the prime mover. The emp-
ty resonator is made from two 3.82-cm-i.d. (inner diameter)
copper tubes, separated by a 2.18-cm-long brass section hav-
ing a slightly larger inner diameter. This brass section is
called the ambient heat exchanger container. The lengths of
the two sections of copper tube are 11.43 and 87.95 cm. One
end of each section is fitted with a flange that allows them to
be soldered to the ambient heat exchanger container. A 0.64-
cm-thick copper cap is fixed to the other end of each section,
forming a closed, rigid termination. The cap on the longer
section houses a 1.9-cm-diam electret driver and a 0.59-cm-
diam electret microphone. The driver and microphone are
flush mounted and sealed in the end cap with epoxy. Even
with the driver and microphone mounted in the end cap, our
measurements show that it still behaves as a rigid termi-
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nation. The total length of the resonator, including the heat
exchanger container, is 101.56 cm (internal dimensions).
The resonator is connected to a gas handling system,
through a fill tube in the ambient heat exchanger container.
This connection allows for evacuation of the resonator be-
fore pressurization with gas (helium or argon) and a system
vent. A dial pressure gauge and an Omega model PX304-
1S0AYV pressure transducer are connected to the fill line to
sense the mean pressure inside the tube. The driver input
signal is provided by an HP 3325A function generator and
amplified by a Techron model 7520 power amplifier. The
microphone output signal is amplified by a preamplifier with
a gain of 100.

The second configuration differs from the first only in
that the ambient heat exchanger is mounted in the ambient
heat exchanger container. The ambient heat exchanger con-
sists of two stacks of parallel plates. Each stack is composed

of twenty five 0.045-cm-thick, 1.02-cm-long copper plates.-

The gap between each plate is 0.104 cm. The two stacks are
mounted in a 3.82-cm-i.d. copper tube such that there is a
0.15-cm gap between them. (This double stack heat ex-
changer is not necessary for these measurements; a single
stack would suffice. However, the double stack will be need-
ed in a future phase of this research.)

The third configuration, the prime mover, differs from
the second by replacing the shorter section of copper tube
used in the first two configurations with a different section
This section consists of a nickel heater section, a nickel hot
heat exchanger, and a stainless steel prime mover stack. The
heater section consists of a 5.08-cm-o.d., 3.82-cm-i.d., 5.50-
cm-long nickel tube. The 0.63-cm wall thickness along with
the use of nickel with its high thermal conductivity is intend-
ed to insure that the temperature along the heater section is
uniform. One end of the tube is rigidly capped and drilled to
accommodate a thermocouple probe, used to sense the hot
heat exchanger temperature. The hot heat exchanger is
mounted at the other end of the heater section. This heat
exchanger consists of twenty-five 0.045-cm-thick, 0.762-cm-
long nickel plates. The gap between each plate is 0.104 cm.
The distance from the closed end of the heater section to the
beginning of the hot heat exchanger is 5.50 cm. The prime
mover stack consists of thirty-five 0.028-cm-thick 304 stain-
less steel plates, 3.50 cm long and spaced by 0.077 cm. This
stack is housed within a thin walled (0.05 cm thick) stainless
steel tube. One end of this stainless steel tube is welded to the
nickel tube such that the hot heat exchanger and prime mov-
er stack are in contact. The other end of the stainless steel
tube is fitted with a flange so that the entire section can be
soldered to the ambient heat exchanger container. Summa-
rizing the prime mover configuration, it consists of a 5.50-
cm-long nickel tube, a 0.762-cm-long hot heat exchanger, a
3.50-cm-long prime mover stack, a 2.18-cm-long double
stack ambient heat exchanger, and an 87.95-cm-long copper
tube. The total length of the prime mover is 99.9 cm. The
configuration is shown in Fig. 1.

B. Temperature control and measurement

The nature of the experiment requires that a tempera-
ture difference be established across the prime mover stack
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FIG. 1. Diagram of the prime mover configuration.

and maintained precisely (within 1 K). [tis also necessary to
eliminate temperature gradients elsewhere in the resonator.
Temperature control of the prime mover is achieved as fol-
lows. An Omega Engineering model HBA 202040 nozzle
heater is clamped to the nickel heater section. Electrical
power is supplied to the heater through a variable ac trans-
former. The hot end is surrounded by insulation to reduce
heat loss to the room and to help maintain a uniform tem-
perature distribution along it. The ambient heat exchanger is
maintained at near room temperature by circulating water
through a jacket that surrounds it. The temperature of the
water is maintained with a Neslab model RET-110 circulat-
ing temperature bath. After the water leaves the jacket it
circulates through flexible plastic tubing that is wrapped
around the majority of the length of the longer section of
copper tube. This section of tube is also surrounded by styro-
foam insulation to heip maintain a uniform temperature dis-
tribution along its length.

The temperature of the prime mover is monitored by
four thermocouples. A type K thermocouple is in contact
with the center of the hot heat exchanger to sense the tem-
perature of the hot end. Three type E thermocouples are
glued to the top, middle, and bottom of the cold end to sense
the temperature along that section. The reference tempera-
ture for the whole system is found by using a 4-wire resis-
tance measurement of a thermistor mounted on an alumi-
num isothermal block. For the first two resonator
configurations, the hot end is replaced by the shorter section
of copper tube and the type K thermocouple is not used.

C. Data acquisition

The quality factor of the various resonator configura-
tions is determined by measuring the steady-state frequency
response. This measurement is accomplished by driving the
resonator at frequencies near resonance and measuring the
steady-state amplitude of the microphone output signal with
a Stanford Research model SR-530 lock-in amplifier. The Q
is determined by performing a least-squares fit of the data to
the ideal response. Data acquisition is performed by a Stan-
dard 286 personal computer. Referring to Fig. 2, the com-
puter communicates with the lock-in amplifier, the HP
3457A digital muitimeter, and the HP 3325A function gen-
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FIG. 2. Schematic diagram of the instru-
mentation used in the experiment.

Function

erator through a GPIB interface. Through the execution of
the controlling program, a source signal is supplied by the
function generator to the electret driver. The output voltage
from the microphone is amplified by a preamplifier and sent
to the lock-in. The output of the lock-in, as well as all other
data signals of interest, are fed to an HP 3457A multimeter.
The output of the multimeter is recorded by the computer.

Before data acquisition is started, the resonator is evacu-
ated and filled with helium or argon to the desired pressure.
When data acquisition begins, the program records the mean
gas pressure within the resonator. Next, the approximate
resonance frequency and the haif-power bandwidth are en-
tered into the computer, which then determines the start and
stop frequencies and the frequency increment. The program
sets the driving frequency and measures temperatures, fre-
quency, and the output of the lock-in. The program then
increments the frequency and repeats the process. The time
required to measure the frequency response is approximate-
ly 5 min.

The temperature along the entire length of the resonator
is held uniform during the measurements on the first two
configurations. For the prime mover configuration, the tem-
perature of the hot end is set by adjusting the electrical power
supplied to the heater. After the hot end has reached thermal
equilibrium, data acquisition is initiated.

. RESULTS AND ANALYSIS

The Q of the resonator was determined by fitting the
steady-state frequency response to a standard resonance
equation: .
A@) = Ay, /[1 + (@703 Q (1 — 0} /0*)?]'2, (1)
where o is the angular frequency of the drive and w, is the
resonance angular frequency.®
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To model the experiment, a closed tube with counter-
propagating plane waves is assumed as shown in Fig. 3. In
each region, the acoustic pressure of the incident and reflect-
ed waves is expressed as p\"' = P{"e' ' and
Pl = P+ ) respectively. Continuity of “pressure
and volume velocity is assumed at each interface. Continuity
of volume velocity is written in the form
(P - Pz, = (P — PP)/z,, where zis called the
impedance of the region and defined in Appendix A. At the
driving end (x = 0), u(0,¢) = iwle”, where [ is the effective
driver displacement (assumed to be independent of load).
The total complex acoustic pressure at the drivingend P,
is P{"" 4 P{". The amplitude of the sound at the driving
end, where the response is measured, is the absolute value of
P, .- The expression for P, is derived in Appendix A. As
the frequency assumed for the caiculation is incremented,
P, goes through a maximum, giving the resonance fre-
quency f,; f was changed in steps of 0.5 Hz. We computed
valuesof 4 for frequencies spanning resonance and then per-
formed a least-squares fit to Eq. (1) using Q as the adjustable
parameter.

To calculate P, all that need be specified are the
propagation constants in each region and the boundary con-
ditions. The case of no temperature gradient is analyzed in

l.k [

FIG. 3. Diagram showing the subdivision of the prime mover used for the
counterpropagating plane-wave analysis. For analysis, the driver is as-
sumed to be at the left.
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TABLE 1. Measured and predicted values of the resonance frequency and Q of the empty resonator for argon and helium gasat vanous pressures; Af is the

total change in resonance frequency with pressure.

Pressure (kPa) /; (measured) /o (predicted) % error  Q(measured) Q(predicted) % error
Argon
170 155.6 156.0 +0.3 79 81 + 2.5
238 155.8 156.5 +04 91 95 + 44
307 156.0 156.5 +0.3 102 110 + 7.8
3% 156.1 156.5 +0.3 116 123 + 6.0
Af=0.5 Af=05 av= 403 av = + 5.1
Helium
170 489.0 487.5 +03 48 S0 +42
238 490.2 488.0 +04 57 59 +35
307 490.6 488.5 +04 64 67 +4.7
376 490.5 489.0 +0.3 70 74 +5.7
Af=1.6 Af= L5 av= + 035 av= +4.5

Sec. IT A below. Except in regions where piates are present,
the propagation constants are computed from Shield’s
work.” In the regions where plates are present, the propaga-
tion constants are computed from the theory of sound propa-
gation through porous media.*® Pertinent resuits from po-
rous media theory are discussed in Appendix B. Those unfa-
miliar with this type of analysis are advised to read Appendix
B before proceeding. The case where temperature gradients
are present is analyzed in Sec. II B.

A. Analysis of data taken with no temperature gradient

In the empty resonator case, we set k,, 2, k,, 2,, k,, Z,,
ks, 2z, equal to k,, z,, where &, is computed from Shieid’s
work’ as k, = w/c, — ia,. The impedance z, is computed
asz, = wp,/k,. The length of the empty resonator is 1.0156
m. The measured and predicted Qs and resonance frequen-
cies are shown in Table I for the resonator filled with argon
and helium at various pressures.

For the resonator plus the ambient heat exchanger,
1, = 87.95 cm; [, = 90.13 cm. The heat exchanger consists
of parallel plates with a gap of 1.04 mm. The measured po-
rosity is 0.667. Attenborough’s theory® is used to compute

z, and k,; k, and k, and z, and z, are set equal to k, and z,,
respectively. The total resonator length is 1.0156 m. Resuits
are shown in Table I1. Again, experimental and theoretical
results are in close agreement. Note that the sign of the error
in Q has changed for helium compared to that in Table I,
suggesting that more attenuation is predicted than actuaily
observed.

Finally, for the case of the prime mover with no tem-
perature gradient, /, = 93.635 cm and /, = 94.397. The full
resonator length is 99.9 cm. The stack consists of parallel
plates with a gap of 0.77 mm. The measured porosity is 0.76.
It is clear that as the wave propagates from pores of one
geometry to pores of a different geometry, the flow velocity
will be changed. As an extereme example, offset parallel slits
could completely block the flow. It is not so clear how one
should include this effect. As a first approximation we have
chosen to introduce as the porosity at the heat exchanger/
stack interface, the fraction of area not blocked by either set
of plates (0.53). A more accurate representation might fol-
low the approach in Ref. 10. In any case, using 0.53 instead
of 0.76 makes a difference of at most (0% in computed Q.
Using 0.53 as the porosity of the stack, Attenborough’s theo-

TABLE I1. Measured and predicted values of the resonance frequency and Q of the resonator with the ambient heat exchanger for argon and helium gas at

various pressures; Af is the total change in resonance frequency with pressure.

Pressure (kPa) /o (measured) Jo (predicted) % error  Q(measured) Q(predicted) % error
Argon
170 156.4 156.5 +0.1 60 59 - 1.7
238 156.5 157.0 +03 72 A —14
o 156.4 157.0 +04 81 82 + 1.2
376 156.7 157.0 +02 89 91 + 2.2
500 157.1 157.0 -0.1 102 103 + 1.0
Af=07 Af=03 av=+02 av=+03
Helium
170 490.3 488.5 -04 36 35 —-28
238 4914 489.5 -04 43 42 -23
307 492.0 490.0 —-04 49 49 0
376 493.1 4;9_0_2 - 0.5 b1} 54 - 1.8
Af=238 Af=20 av="—04 av="—17
—
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TABLE III. Measured al;d predicted values of the resonance frequency and Q of the prime mover with no temperature gradient for argon and helium gas at

various pressures; Af is the total change in resonance frequency with pressure.

Pressure (kPa) /i (measured) Jo{predicted) % error  Q(measured) Q(predicted) P error
Argon
170 161.6 162.0 +0.2 40 38 -5
238 161.8 162.0 +0.1 47 47 0
307 162.1 162.0 +0.0 54 53 ~2
376 162.1 162.5 +0.2 58 59 +2
500 le2.3 162.5 + 0.1 68 70 +3
Af=07 Af=05 av= +0.15 av= +
Helium
170 505.2 504.5 -0.1 23 20 -13
238 507.2 505.5 -0.J3 28 26 ~7
307 508.5 506.0 -05 32 30 -6
376 509.4 507.0 -0 36 34 -6
500 5105 507.5 - 0.6 42 49 =5
Af=53 Af=30 av=—04 av=—1

ry is again used to compute k, and z;. Results are shown in
Table II1.

B. Analysis of data for a prime mover below onset

The expressions for the propagation constant and im-
pedance derived in Appendix B must be altered when tem-
perature gradients are present. To find these new expres-
sions, we take the same approach as in Appendix B. The only
difference being that weé use a theoretical approach present-
ed by Rott’ and Swift' to solve for the acoustic velocity and
temperature distribution across a slit in the presence of a
temperature gradient. Using these results, we find expres-
sions for the complex density and complex compressibility
and finally & and z. Once we have k and z, we can find P,,,.

The complex density is the same as that derived for the
no temperature gradient case and derived in Appendix B.
The result is

tanh[ (1 + Na/b,] )"
=p{1l~ . 2)
Pe ”’( (1 + a/se, (
Swift writes for the appropriate heat balance equation
. aT,,\ . 3%
p,c,,(m0+u. I)—wa,,,Bp=,{,, _ (&)}

where p, is the density of the gas, ¢, the isobaric specific heat
capacity (per unit mass), 8 the variation in temperature due
to the acoustic wave, u, the acoustic velocity in the direction
of propagation, dT,, /dx the temperature gradient across the
stack, T, the mean temperature, 8 the coefficient of volume
expansion, p the acoustic pressure, and 4, the coefficient of
thermal conduction. Again from Swift,

=t !L(l_cosh[(l~+i)y/6,])
' cosh( (1 +ia/8,]/
Substituting this expression for 4, into Eq. (3] gives

i dpf, cosh[(1+i)y/5,] )dT,,,
L .

”"“’['”'“ wp, dx ( cosh[ (1 + Da/o,] /) dx
3%

— T, fBp=4, >
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4)

(5)

where 8, = (2v/w)'’?, v is the kinematic viscosity, and a is
the semiwidth of the slit. Swift identifies a solution

0=T'"Bp-— 1 (1 ocosh[ (1 +i)y/é,] )

ps’ par\ (o—1)cosh[(1+0a/é,]
dp 4T _[TnB  (dp/dx)(dT,/dx)
dx dx |ps, (o - pw

x(l+ ejv)] cosh[ (1 + Ny/8,]
fi (1 +¢€,) cosh{ (1 +a/é, ]

where o = v/« is the Prandtl number, and the other new
terms are defined in Table V. As expiained in Appendix B.
the condensation of the gas in the slit can be expressed as

s=p/p, —0/T,. (7

Substituting Eq. (6) into Eq. (7), factoring out p/¥p,,, set-
ting T,8=1, and recognizing that p,/p,c,T.,
= (y — 1)/y for an ideal gas give

p [ & ( o cosh[(1+0)y/8,] )
s=—"—{14+—[1-
VP m ? o~ 1 cosh[(1 +Dasé,]
» 9ptox 9T, /9%
p T,

» (6)

TABLE IV. Symbols used in Eq. (6).

tanh[ (1 + a/é, ] _tanh{(l+ Nass, |

L (1 + a/b, YTy dars,
_ [Aspsc, tanh[(1 +ia/é, |
"7 A/ Ap.c, tanh[(1+)b/5,)
8, = y2v/w 8 =JW,/w
5, = 2 /w K, =Au/pis,
x, =A/p,c, A, = thermal conductivity
of the fluid

A, = solid thermal conductivity
¢, = solid specific heat/unit mass

p. = solid density
b = half-width of soiid
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1
+[(,,_ ,)+_cj:( + & flfe Ip/ix ar,/ax)]
w* (c—-1) p T,
1 cosh{ (1 +)y/é,] ' (8)
| + € cosh[(1+0a/s, 1]
Integrating the condensation across the slit gives
-1 2
=2 {l+(r e +_"'_.(1_ 7 _r
fe+ef.  \ap/ax aT,,,/ax] 9)
(e—1)(1+¢€)/ p T. |

We use Zwikker and Kosten's® definition of compiex com-
pressibility {C(w) =35/p =5/p] to get
-1,
Clw) = — [1+ tr— 1. +i(1- c_f,
l + GS (02 g — l

YPm
S + €S, ) dp/dx 6T,,,/c9x]
(c—-D(1+¢) )4 T, |

(10)

For plane traveling waves, dp/dx = ik(T,, )p and Eq. (10)
becomes :

1 (r=-nf ., ¢ o

Clw)=— |1+ 1—2= 4 k—-(l——— g

(w) YPm [ l+€s ! 0)2 U—lf
f. +ef, ) arm/ax]
(e-D(l+e€)) T, |

Finally, referring to Appendix B, we can compute k and
Z according to

k*=w'Clw)p,. (12)

The introduction of the complex density p, results in a sim-
ple form for the wave equation and allows one to retain the
form of Eq. (12). It should be noted, however, that in the
process of deriving a wave equation from (B4), we ignored
the x dependence of p,, which results in the absence of the
terms noted in footnote 11. This is the same level of approxi-
mation as using the values of the transport properties at the
mean temperature in the stack. The impedance can now be
written as

z2=(k/w)/QC(w). (13)

Notethat C(w), k, and z depend on the direction of propaga-
tion.

The presence of a temperature gradient establishes a dif-
ference in propagation constants beyond a simple change in
direction. In region 3,

(1

p}_” =P,('J)ei‘“‘-k“)- (14)
The reflected wave is
Pi” =P:3)ei(wl+k’,x)' (15)

The only remaining task is to get an expression for P,;.
The impedance z only enters in these calculations on applica-
tion of the boundary conditions. At x = Iy, z; = z; = zcal-
culated at T, = T, 4. At x =,, z, =z, = z calculated at
T,, = T,..- To include this asymmetry, we must rewrite the
boundary conditions at x = /; as
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— ikyl k ~ kgl I W]
P,‘”e '3\+P:J)e‘ H=P'(4)e '.\+P:4)e' ol (16)
and
1 (3), ~ taly 1 () kil
— PPe - — P
23 ZJ
l — tkyl L¥)
=;—-(P,‘”e T Pty (17
4

or rewriting,
PP |e” “h _ B(2,/2y)e” 'k""]

= -—P‘,”[e’”l’+B(z‘/z,)e'“"] (18)
and

P = (e ™h/e" ™y ([B~1)/[B+1]), (19)

where B is defined in Appendix A. Working toward the driv-
ing end, we must apply a similar treatment at x = /,,

— Kyls ko, — Kyl k 3.
P}Z)e 22+P('1)e‘ ”=Pf”e Ryéy +P‘,”e’ 32 (20)
and
1

— ikl kyl
—_ (P‘(_z)e § zz_P£2)e‘ u)
2

1 —ikgy | k3
=—'P,‘-“e '”——'P:J’el W2 (21)
2 Z
or
— ik, L3Y;
P‘(I)e kafz __P(’Z)e' 242

~i —ikydy — ity [B— 1] ey
=P}”(e ity g ihats — ity [B — 1] ) 22
B+1]° (22)

or
P g =ikl _ Pkl
1 r

=PY, (ie—.'k‘l, _ _l_e-.k,t_, — kil
i

23 z3
[B-1] ik',l,)
Xo— . (23
{B+1] )

Dividing and setting the ratio on the right-hand side
equal to C,

P~ ikyly + P(Z)e"‘z‘z
1 r

= CPPe "t _ Cp D"t (24)
or

PPe ™1 ~Cl= —PPe" 1+ C) (25)
or

PP =([C—1I/[C+1])e™ " yp™. (26)

The pattern for no temperature gradient derived in Appen-
dix A is now reestablished and P,,,,, has the same form as in
Appendix A.

Consistent with the discussion below Eq. (12), the
speed of sound, viscosity, etc., within the stack are computed
at the average temperature of the stack. The results of the
calculations are shown in Figs. 4-6, along with the experi-
mental data. These figures are graphs of 1/Q, which is pro-
portional to the net attenuation in the resonator, versus tem-
perature difference, ranging from zero to that required for
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FIG. 4. Graph of 1/Q versus the temperature difference across the prime
mover stack. The symbols represent the data, while the line represents the

results of the calculations. The prime mover is filled with helium at a mean
pressure of 170 kPa.
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FIG. 5. Graph of 1/Q versus the temperature difference across the prime
mover stack. The symbols represent the data, while the line represents the
results of the calculations. The prime mover is filled with helium at a mean
pressure of 376 kPa.
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F1G. 6. Graph of 1/Q versus the temperature difference across the prime

mover stack. The symbols represent the data, while the line represents the .

results of the calculations. The prime mover is filled with helium at a mean
pressure of 500 kPa.
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onset of self oscillation. The figures correspond to mean gas
pressures of 170, 376, and 500 kPa, respectively. The indi-
vidual symbols represent the measurements and the lines
show the resulits of the calculations. The agreement between
the theory and experiment at the two higher pressures is very
good. There are some noticeable differences at the lowest
pressure. The theory overpredicts the attenuation at low
temperature differences and underpredicts the onset tem-
perature (1/Q =0).

Measurements were also made for the second and third
longitudinal modes of the resonator at a mean gas pressure of
170 kPa. The data and calculations are shown in Fig. 7. The
X s and solid lines correspond to the second mode, while the
open squares and dashed lines correspond to the third. It was
not possible to make measurements near onset for these
modes, because the onset temperatures exceed that of the
fundamental. The agreement is good. The tendency to over-
predict the attenuation at zero gradient decreases, especially
for the third mode. No conclusions can be drawn concerning
the ability to predict the onset temperature.

ill. SUMMARY AND DISCUSSION

The frequency response of a thermoacoustic prime mov-
er has been measured as a function of the mean gas pressure
and temperature gradient across the prime mover stack. The
frequency response of two simpler resonator configurations
was also measured in the absence of an applied gradient. The
quality factor Q and resonance frequency were determined
from the response. Rather than using a standing wave analy-
sis such as that given by Swift,' we have analyzed the results
in terms of counterpropagating plane waves, an approach
used in studies of the acoustic properties of porous materials.
The motivation behind this analysis is to develop the ability
to transfer extensive research of porous materials to perfor-
mance predictions of thermoacoustic devices. This type of
analysis will be especially useful when considering the use of
alternative geometries in the prime mover stack.

In general, the predictions of the counterpropagating
plane-wave analysis are in good agreement with experiment.
The predictions of Q and the change in resonance frequency
with mean gas pressure are within approximately 5% and
0.4% of measured values for the no temperature gradient
cases. In the cases where temperature gradients are present,
the agreement is quite good for the two highest mean pres-
sures reported (370 and 500 kPa). There are some notice-
able discrepancies at the lowest pressure (170 kPa). Future
work should attempt to incorporate the temperature de-
pendence of the thermodynamic properties within the stack.

Surprisingly, some of the worst agreement is for small
temperature gradients. The reason for this discrepancy is
unknown. There is a tendency to underpredict the onset tem-
perature at the lower pressure and slightly overpredict-it at
higher pressures. We have not presented data or predictions
for the resonance frequency as a function of temperature
gradient. However, the predictions agree with measured val-
ues to within a few Hz, a discrepancy of approximately 1¢%.

Even taking into consideration these discrepancies, our
analysis provides a good overall prediction of the perfor-
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FIG. 7. Graph of 1/Q versus the temperature difference across the prime
mover stack for the second and third longitudinal modes. The X 's and solid
line correspond to the second mode, while the open squares and dashed line
correspond to the third. The prime mover is filled with helium at a mean
pressure of 170 kPa.

mance of the prime mover below onset. However, the true
test is predicting the performance above onset. There are
several significant differences between prime movers above
and below onset. Most obvious is that the acoustic ampli-
tudes above onset are quite large. Ratios of acoustic pressure
amplitude to mean gas pressure of 1%-10% are common.
Yet, our analysis is based on linear acoustics. Beyond the
theoretical complications added by introducing nonlinear
effects, there are a number of experimental complications.
For instance, the acoustic displacement amplitudes ap-
proach the length of the heat exchangers. Also, because of
the large transport of heat, there is no assurance that the
temperature gradient along the prime mover stack will be
uniform.

The next logical step in this research is to investigate
prime movers above onset, but still in the linear acoustics
regime. This study requires the use of some type of known
additional attenuation to limit the amplitudes. Also, the
counterpropagating plane-wave analysis should be com-
pared to Swift’s analysis.'
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APPENDIX A: DERIVATION OF P,

The derivation of P,,, in the absence of a temperature
gradient is presented in this appendix. The combination of
elements in the thermoacoustic prime mover creates a series
of boundaries, each with a characteristic impedance. The
total acoustic field inside the resonant tube will be evaluated
by considering the field as a superposition of traveling waves
moving in each direction through this series of boundaries
and porous elements.
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~ The incident and reflected waves in the five regions can
be expressed as

)] (1) 1wt ~ kyx)

pl =pl e

(1) (y) il + kyx)

p’ =p, e

($) ($) it — kyx) §3) (§) @+ Agx)

p. =p e p., =p, e
First consider the rigid end at x = /,. For a rigid boundary,
u = 0. Newton’s law gives p,du/dt = — Vp. Assuming time
harmonic plane waves, du/dt = iwu so iwp,u = — Vp.
Hence, the boundary condition 4 = O requires that Vp = O at
x=Is or

[v(pPe ~ % 4 PP T ], [ =0 (AD
or

P(5)=e-z'—kil!P(5)' (AZ)

Next, consider the boundary at x = /,. Continuity of
pressure gives
P(‘)ei(ﬁ" — kaly) + P(‘)ei(wl + kely)

=P(.5,e:lwl-—k,l‘) +P(5)e:(¢f:l+k,1‘) (A3)

or, using Eq. (A2),
P(_A)e —~ ikaly + P(‘)e"‘"‘
) r
— ikal, — 2ikgls tkyl
=P,‘”(e '94+e 'sse'sn)_ (A4)

Continuity of volume velocity needs to take into account
changes in porosity and can be written as

(U + U =UD + U], -, (A5)

But U = Su = Sp/z, where S'is the cross sectional area of the
fluid and z is the characteristic impedance of the region.
Hence, continuity of volume velocity can be written as

— tkgl, k
(S(‘)/Z(‘))(Pf‘)e Rals P('4)e+' nln)

=(SP/2P)(PPe” M~ Pet Y, (A6)

Dividing by the cross-sectional area of the empty tube S,
defining the porosity 2"’ = S'"'/S, and further defining
the impedance z, = z!"'/Q'" yield

( l/z‘ )(P:‘)e = ikl —_ P:‘)elk‘l‘)

= (P'!S)/zs )(e — ikgly —e - .Zik,l,elkql.). (A7)
Dividing Eq. (A4) by Eq. (A7) and solving for P\*’ give
P =e N4 -11/[4+ 1P, (A8)
where
z e — ikglg +e- Ziksls jiksly
4= Z g ale _ - ikl iksle : (A9)

Now we will proceed to the boundary at x = /,:
PPe” h oy pOh = pihe tah 4 prargthal (A10)
and
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(1/2,)(PPe ™ "h — phghihy

= (1/2) (P Ve " — phrgihely, (All)
SO
PP~ Mh g prghh

P())e — tkody _ P(De'k‘l‘
1 ,

z (e M e T4~ 1)/04 + 1] )e“"') -3

2z \e ™M —e T4 — 1)/(4 + 1"
(A12)
and
PO =e ¥R =1)/[B+1))PY. (A13)
We can now identify a pattern and write
PP =e M ([C—1)/(C+ 1P, (Al4)
where
=£J-(e—lk‘lz+e—2ik‘l|([3_l]/[B+l])e:k‘lz)
2z, e-‘k‘lz—e-hk‘l'((B—l]/[B'f‘l])eIk'lz ’
(A15)
and
PV = Y D-1)/[D+ 1P, (A16)
where
D=-zi(e—.k:1. +e-zik,l,([C__ 1/[C+ ”)e.k,l,)
z, e-:k,l. —e-M’I’([C— 1/(C+ ll)e:kzh

(A1T)

Now we must consider the driver. The driver is assumed
to deliver a constant displacement / independent of load,
x = le*" (provided / is small). In this case, the velocity is
uo (0,8) = iwle™'. Applying continuity of volume velocity
(with the definition of z, ) at x =0,

iwle““’=l (P:(” —_ Pil))eml
2

1

=—P“)(l—e—2lk'l' [D—l])eiwl' (Als)
z, | D+ 1]

SO
PV =iwlz,/[1—e~™Y((D=1)1/[ID+1]] (A19)
and

P =PV + PV
14e ¥ ((D=11/[D+1)) .

1 — 2kl A20)
- (ID-1y/[D+1])

= iQJIZ|

APPENDIX B: PARALLEL SLITS WITHOUT A
TEMPERATURE GRADIENT

Using fundamental concepts from inviscid acoustics, it
is easy to show that for plane waves the propagation constant
k and characteristic impedance z can be expressed as

k?=w’Cp, (B1)
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and
z=(k/w)/C. (B2)

In these equations w is the angular frequency, p, the mean
fluid density, and C the compressibility of the medium. One
way of defining the compressibility is through the equation
of state p = s/C, where p is the acoustic pressure and s the
condensation. These results must, of course, be modified
when considering propagation through porous media to take
into account the complications introduced by viscosity and
thermal conductivity. The approach commonly taken in po-
rous media analysis is to incorporate the added complexity
into the definitions of new parameters, such as the complex
density and complex compressibility, leaving the forms of
Eqs. (B1) and (B2) unchanged. This analysis is outlined in
this appendix. The reader is directed to Refs. 8,9, and 12 for
a more complete analysis.

The average acoustic velocity in the slit formed between
two stationary parallel plates separated by 2a is'*

7 —1dp (l _ tanh{ (1 +1)a/6‘,])‘ (B3)

iwp, dx (1 +ia/b,
where 8§, = (2v/w)'/? and v is the kinematic viscosity. We
define the complex density p, in terms of the pressure gradi-
ent and the slit-averaged acoustic velocity such that

Z-o (%)
ax "“\a /)

To be consistent we should use the slit-averaged pressure
gradient in Eq. (B4). However, we have assumed the pres-
sure to be dependent only on x, so this distinction need not be
made. Solving Eq. (B3) for — (dp/dx) and comparing the
result to Eq. (B4) give

(B4)

tanh[ (1 +i)a/5..]) !
. =pA1— . (B3)
Pe=br ( (1 + ia/é,
The temperature equation is
) . a6
iwpc,0 + iwp =4, 5 {B6)

where A4, is the coefficient of thermal conduction, ¢ the dif-
ference between slit wall and fluid temperatures. and c, the
isobaric specific heat of the fluid; y is measured perpendicu-
lar to the slit wall. Applying the boundary condition that
6 =0aty= + ayields the solution

cosh[(l+i)y/6.])
6=p/pse,(1— .
P”’c’( cosh[ (1 + Na/a, ]

A differential form of the ideal gas equation of state is
dp/p, = dp/p,, ~dT /T, Substituting acoustic quantities
for differentials and identifying the condensation as p/p y We
have

s=p/p, —6/T,. (B8)

(B7)

Substituting Eq. (B7) into Eq. (B8) and noting that
Pn/pc, T, = (¥ — 1)/y for an ideal gas give

h[ (1 +y/6
cosh [ ( +l-)y .]). (B9)
cosh{ (1 +i)a/sé, |
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Averaging the condensation across the slit gives'*
tanh{ (1 + Na/d, )
[(1 +Da/é, ]

3=—’3—(1+(r— 1)

). (B1O)
YPun

Zwikker and Kosten” define the complex compressibili-
ty of the gas in the slit through the slit-averaged equation of
state

?=5/Clw). (B11)

Substituting Eq. (B10) into Eq. (B11) and keeping in mind
that the pressure is assumed constant across the slit, we ar-
rive at the following expression for the complex compress-
ibility:
tanh[ (1 + Na/é, |
[(1+Da/d. )

Now that we have the (slit-averaged) complex density
and complex compressibility, we can immediately write
down the slit-averaged expressions for the propagation con-
stant and impedance. From Eq. (B1),

k*=w'Clw)p.. (B13)
From Eq. (B2) and the relation z, = z/Q} (see Appendix
A),

z, = (k/w)/QC(w). (B14)

To find common ground with those readers familiar
with Swift's work, especially Ref. 1, our Egs. (B3), (B6),

Clw) =L(1 + (=1

m

). (B12)
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and (B7) are identical to (from Ref. 1) the slit-averaged Eq.
(A4), and Egs. (A9) and (A10) in the absence of a tem-
perature gradient, respectively.
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THERMOACOUSTIC ENGINES
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ABSTRACT

Thermoacoustic engines can be used to pump heat
using a sound wave or pump a sound wave using a
temperature gradient. The basic arrangement is a gas-
filled acoustic resonator with appropriately positioned
thermoacoustic elements. Two types of thermoacoustic
elements are used in these engines: (1) heat exchangers
used to communicate heat between the gas and external
heat reservoirs; (2) the thermoacoustic engine (TAE), also
known as a stack. The TAEs are sections of porous
media that support the temperature gradient, transport
heat on the acoustic wave between the exchangers, and
produce or absorbs acoustic power. Previous results have
bemdevehpedfa‘l‘AEswuhcuculxorpuﬂblshtpae
geometries. We have extended the theory for gas-filled
TAEsnmdndepauofubmaw-secnaul
geometry. Included are an introductory section,
approximate analysis of energy flow, and acoustical
measurements of a thermoacoustic prime mover.

INTRODUCTION

Thermoacoustics is broadly classified as the
interaction of heat and sound. The branch of
thermoacoustics we consider is heat driven oscillations of
gas in a tube and thermoacoustic transport of heat. The
basic arrangement is shown in Fig. 1a where
thermoacoustic elements of heat exchangers and a TAE
are shown in the gas-filled driven resonance abe. The
plane wave mode of the resonator is considered © be
standing-wave phaging. This arrangement could be used
to deliver acoustic power to the TAE for heat transport
from cold t0 hot {for low temperature gradients (Ty -
Tc)Yd) as in 2 normal refrigerator. Thermoacoustic
elements are sections of capillary-tube-type porous media
as shown in Fig. 1b. Theory for the system is built
from the model for sound in a single arbitrary-perimeter
capillary wbe as shown in Fig. 1c. Some pore perimeter
shapes which have been considered are shown in Fig. 2.

Single tube radii are usuaily designed to equal the
frequency-dependent thermal boundary layer thickness 57
for optimal performance. By removing the acoustic
driver and supplying a sufficiently high temperature
gradient, the TAE produces acoustic power at the resonant
frequency of the system.

Fig. 1. 2a) Generic airangement used in thermoacoustic
heat engines. b) An exposed view of a thermoacoustic
element consisting of a parallel combination of square
capillary tubes. ¢) A single arbitrary-perimeter capillary
tube for use in a thermoacoustic element.

Observations of heat-driven acoustic oscillations date
back 10 at least the eighweenth century. Rayleigh! gave a
qualitative explanation well-worth quoting: “In almost
all cases where heat is communicated © a body,
expansion ensues, and this expansion may be made to do
mechanical work. If the phases of the forces thus
operative be favorable, a vibration may be maintained.”
Acoustic oscillations were nosed 10 frequently occur in a
capillary wbe filled with helium vapor with one end of




the tube at approximately 2 K and the other at room
temperature and a qualitative explanation similar to
Rayleighs was given.2 A full, linear, theoretical
investigation of heat-driven acoustic oscilladons was
performed first by N. Rott® and was explored in a series
ofpapftsstzrﬁngin 1969. Rott has reviewed this

work.
y 2a
__;_f_
a) b)

N\
v/ A%
P N/

P fe—2a

c ? d)

Fig. 2. 2) Parallel plate, b) circular, ¢) rectangular, and
d) equilateral mriangular capillary tube geomemies.

The reciprocal mode of operation, which uses a
sound wave in a resonator 10 transport heat from cold to
hot as in a refrigerator, has also been of recent interest.
This thermoacoustic streaming has its analogy in
acoustic streaming, which is the transport of mass by an
acoustic wave.5 Merkli and ThomannS found
experimental verification for their theory of
thermoacoustic streaming in a driven resonance tube.
Wheatey, Swift, Hofler, Garrett and others have
developed the notion that the airangement shown in Fig.
12 can be viewed a3 a thermodynamic heat engine.’-3
Swift has expertly reviewed this work.? The
thermodynamic heat engine point of view enhances the
understanding of thermoacoustics and is very helpful in
Refs. 4, 6, and 9 has been briefly explored by Rott.10
Other references 10 the early history and practitioners of
thermoacoustics can be found in the review articles. 49

A common approach for the theory of sound in
porous media is to envision the medium as a collection
of circular capillary tubes.!1 The generalization
capillary tubes of arbitrary geometry has recently been
explored.12 The equations and boundary conditions used
in porous media modeling and in thermoacoustics are
nearly identical (thermoacoustics has an extra term
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proportional to the ambient temperature gradient that
occurs when evaluating the time rate of change of the
entropy). It was apparent to us that thermoacoustic
theory should be cast in 2 sufficiently simple form tha
analysis of pore geometries other than circles and
parallel slits% would be readily possible. ‘

In particular, we have considered use of extruded
ceramic monolithic catalyst supports (for example, the
ceramic used in some automobile catalytic convertors)
use in thermoacoustics on account of their low thermal
conductivity and regular square-pore geometry.13 This
material has main pores of diameter 1.54 mm. In
addition, the walls of the main pores are porous as wel
with typical wall pores of diameter 25 um. The
frequency-dependent compiex propagation constant of
sound in the square pore ceramic was measured in relate
work.14 The specific acoustic impedance of 2 49 cm
long piece was measured both before and after the wall
pores were filled. These measurements verified our
theory for sound propagation in porous wall porous
media.:3 The TAE used in the lecture demonstration w
a san:zle of this ceramic.

We have extended thermoacoustic theory to inclu
flow for arbitrary perimeser pores.!6 Heat and work fic
were compared in the shart stack approximation to
investigate the effects of pore geometry. Once the
acoustical properties of the separate thermoacoustic
elements have been determined the elements mast be
connected in series inside of a resonator as shown in Fi:
1a. Numerical ineegration of the acoustical equations is
used to compute field quantities in the stack since in
general a temperature gradient exists from one end to th:
other.49 The physical parameters of ambient density,
viscosity, sound speed, thermal conductivity, etc, are
temperature dependent and thus depend on location with
the TAE. Specific acoustic impedance and pressure
translation theorems were developed!$ to compute all
acoustical field quantities and energy flow at each point
the resonance tube shown in Fig. la.

FLUID PARCEL VIEW OF
THERMOACOUSTICS

Figure 3a and 3b depict an inviscid gas parcel
oscillating between solid parallel plates at the extremes «
motion. Heat ransfer can usually be neglected in norm:
low frequency acoustics. However, for parcels near solic
surfaces heat exchange is likely to occur. Standing wav:
phasing is assumed so fluid parcel displacement and




ressure are in phase. The plates have a temperature
sradient along them in the direction of oscillation. The
.ocation for wall temperature T is nominally the parcel
xquilibrium location. The magnitude of the temperature
sradient determines whether heat is transferred to or from
he gas parcel. The right end of the plate faces a pressure
mtinode and the left end a pressure node. Consider first
‘he heat pump operation in Fig. 3a. The gas parcel is
-apidly displaced left a distance d from equilibrium,
Juring displacement parcel pressure and hence
emperature diminishes and expansion occurs. At the
.eft-most location, the parcel is momentarily still so the
osossibility of (siow) heat transfer from the wall occurs.
For a small wall temperatre gradient, the parcel is now
at a lower temperature than the wall so heat flows from
che wall to the parcel. After wransfer of heat dQ' from the
wall to the parcel, the parcel expands to the size shown
by the shaded square and work is done by the pascel on
the gas to the left. This work discourages vibration of
the gas to the left since that gas-is in the expansion part
of the cycle. The parcel then is displaced to the right a
distance 2d. Heat dQ is transferred to the wall from the
parcel, and the parcel shrinks to the size shown by the
shaded square. The parcel absorbs work from the gas o
the right which is in the compressional part of the
acoustic cycle. Net heat is transported by the parcel from
the wall at ®emperature Tg - AT to the wall at
temperature Tg + AT. It is now easy 10 see that heat
from an exchanger at the left can be transported up the
temperature gradient 10 2 heat exchanger on the right and
that acoystic power is absorbed by the parcel.

a)

SMALLAT: HEAT PUMP
Te+ AT

Te=-AT Te

b) LARGEAT: PRIMEMOVER
Te=-AT Te Te+ AT

Fig. 3. Lagrangian view of a fluid parcel in a standing
wave near 8 boundary.

Consider next the prime mover in Fig. 3b. The
gas parcel is rapidly displaced left a distance d from
equilibrium. For a large wall temperature gradient, the
parcel is now at a higher temperature than the wall so
heat flows from the parcel to the wall. After transfer of
heat dQ’ from the parcel to the wall, the parcel shrinks to
the size shown by the shaded square and work is absorbed
by the parcel. This work encourages vibration of the gas
to the left since that gas is in the expansion part of the
cycle. The parcel then is displaced to the right a distance
2d. Heat dQ is transferred to the parcel from the wall, and
the parcel enlarges 10 the size shown by the shaded
square. The parcel delivers work to the gas on the right
which is in the compressional part of the acoustic cycle,
thus encouraging vibration. Net heat is ransported by
the parcel from the wall at temperature Tg + AT to the
wall at wemperature Tg - AT. It is now easy to see that
heat from an exchanger at the right can be tansported
down the temperature gradient to a heat exchanger on the
left and that acoustic power is produced by the parcel.

Viscous and thermal boundary layer
thicknesses>16 are given by 8y = (2Vwpg)l/2 and 5¢ =
aﬂmpm,)m. We introduce a dimensionless "shear
wave number” A = R(poavn)172 or A = 2172 R/5,, where
R is a characteristic transverse dimension of the pore in
Fig. 1c, and a dimensionless thermal disturbance number
AT = R(pooocp/x) 2 or AT = 212 R/8y. Use of the
Prandtl number Ny = Ticp/x gives the relation AT = A
Npe!”2. For definiteness, take R 10 be twice the ratio of
the trangverse pore area © the pore perimeter so for a
circular or square pore, R is the pore radius. Consider the
single pore transport function F(x,y,A) defined by the
following partial differential equation!6:

F(x,y:A Bivzp A) =1 1
(xyid) + 53 V" Fxyid) =1, )

subject 1 the boundary condition that F(x,y,A) = 0 at the
(arbitrary perimeter) pore wall in Fig. 1c. The average
over pore cross-sectional area A is FQA) = A-! { F(x,y:A)
dx dy. All first order acoustic and second order heat
equations can be written in terms of F(x,y;)).16

HEAT AND WORK FLOW

The short stack approximation was devised by
Swift4 1o get an interpretable analytical expression for
energy flow using boundary layer theory. For arbitrary
pore shapes, see Ref. 16. Figure 1a shows the

arrangement for the short stack approximation. Heat
exchangers are taken 0 be of negligible thickness and




thus not to affect near-standing wave phasing. The TAE
(or stack) of length d is assumed to be short enough that
the empty tube standing wave is marginally affected. The
temperature difference between oppasite ends of the TAE
is assumed to be much less than the average temperature
at the TAE center so that the thermophysical quantities
are approximately constant and are evaluated at the
average temperature. TAE porosity is Q.

With a rigid termination at z=0 in Fig. 1a,
pressure, particle velocity amplitude, particle velocity,

and particle displacement amplitude and pardcle
displacement at z are

P1(z) = P1(0) cos koz , 2a)
v:(z) - ?dlg-:cl:iu koz , 2b)
vz(Z) = iv:(z) . x)

)

g:(l) - !ff)' , and . m
§z(2) - &:(z) D @)

where the wavenumber in the empty tube is ko, the
phase between pressure and particle displacement is due
only 0 the choice of the coordinate system in Fig. 1a,
and the actual pore particle velocity and displacement are
shown. Whmzula:mmmeqwofawavdenglh.
Pl(z).v;(z).muz)manmmm The total
time averaged enexgy flow.in the TAE is the sum of heat
and work flows, Ha(z) = Qa(2) + Wa(2).916 Hext flow
at the hot end of the TAE (that would flow into a heat
exchanger) is

- s
%2) = - QAres 921 (2) vz2) BTo Im (F*OIVFM)

1+ Npr
Ccp QA vs 2?) .
+ 2
Im{F* (A1) + Nogr FA\)}
(1= Npr?) F(M)2
x g:(z)lﬁilc . 6))
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The first term is due to conversion of acoustic power i
heat and this heat flows (in the TAE) towards the nearc
pressure antinode. The second term is heat transported
account of the temperature gradient and this heat flows
the direction opposite to the positive temperature gradic
irregardless of the position of the stack in the standing
wave. The terms preceding the temperature gradient are
kind of a dynamical coefficient of thermal conduction.
The TAE acts as a refrigerator when the first term is
larger than the second. Denote by Toz = (Tc - THYVd t
temperature gradient across the stack, and denote by I'':

dmﬁnz:mmsmnml temperature gradient ratio given
by

I'=-To .R._ﬁ
0w QPBToc

In the inviscid approximation for which Npe = 0 and F
-l

Qe = b BIOP o, o)

xImF'Ap) -1 .

Physically, the term /m F°(AT) is 2 measure of the
dynamical thermal interaction between the gas and sol
If I'<1 heat is trangported from cold to hot for 2kgz <

No work is done in the region to the left of the
stack in Fig. 1a because in this region, pressure and
velocity have standing wave phasing. To compete th
work done in the stack, use is made of the impedance
translation theorem to get the impedance at the right .
of the stack.16 Denote by Vg = Ares Q d the ambie:
volume of gas in the TAE. Work flow to first order
kod is

- v .
Watt) = -0 08D ¢y o)
poc

- ® po Vg v?(z) ImF'(A)
2 F)2

+ g‘%"" P1(@) vz(z)p

Im{F*QATYF(A
x (Ty - Tey LT ;’:ﬁ )




The first and second terms, always < 0, are dissipation of
potential and kinetic energy per unit time due to thermal
and viscous diffusion processes. The third term, which is
> 0 when the hot end faces a pressure antinode, is the
acoustic power produced on account of the temperature
gradient. When the third term is larger than sum of the
first two, the TAE produces net acoustic power. Work
flow in the inviscid approximation is

3 2
Wa(2) ,_éﬂzig Pl(O)z I-Q;%cm—d
P

x Im F*(AT) cos2(kgz) 1-1) . o

Work and heat flow are 10 be compared for the
various pore geometries shown in Fig. 2a-2d. In the
mvnsc:dshautackapwoxmm.pauwuhalnge
value of /m F(A)* will have the greatest heat and work
flows. Accneding to Fig. 4, which shows the real and
imaginary parts of F(A) for the various pore geometries,
dnpmudphegeomyhasmehgmvahnof
ImF()". The value occurs for Ac = 3.2 which allows
one to compute the optimal operating frequency from the
relation A = (g ® ¢p/ ¥)12R. In other words, you can
get about 109% more heat flow and work flow in
thermoacoustics by choosing to make your stack from
sarallel plates rather than the other pore geometries. The
‘unctional form of F(A) for the various pore geometries is
given in Ref. 16.
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ig. 4. Real and imaginary part of the F(A) different pore

e 'y
é |
0

AIR-FILLED PRIME MOVER RESULTS

The air-filled thermoacoustic source demonstrated
during the lecture is shown schematically in Fig. 5. Heat
exchangers were parallel plates of copper and the TAE is
a monolithic catalyst support extruded ceramic.13-15
The two-microphone-technique impedance-tubel” at the
bottom was removed for the demonstration. The
nominally quarter-wavelength resonator was capped at the
top with a rigid plate and was open at the bottom. Heat
tape was wrapped around the hot end (the region including
the tube at top and the first heat exchanger) followed by
heat insulation. Water was circulated around a jacket
surrounding the cold heat exchanger. In this way, a
temperature gradient was established across the TAE. For
sufficiently high temperature gradients, (AT = 176 K) the
tube produces sound at 116 Hz. The ambient temperature
TC = 295 K. The location z=0 is nominally a pressure
node and particle velocity antinode so the specific
acoustic impedance (equal to pressure divided by particle
velocity and abbreviated by SAI) is a relative minima for
frequencies in the vicinity of the quarter wavelength
resonance. All parts were made of copper except the
TAE.

THERMOACOUSTIC
PRAME MOVER

L= 2098 om
Asds2 oM

Q=074 Leificom ReifSmm
Qe073 Led4l20om A=077 mm
Q=074 Le18i0cm Ra=t8Smm

LessaSom
RedX2cm

9

Fig. 5. Demonstration thermoacoustic oscillator and
analysis impedance tube.

SAl measurements were made as a function of the
temperature gradient across the stack. The real part is
shown in Fig. 6 and imaginary in Fig. 7. Among other
uses, these measurements are helpful for evaluating the




possibility of using the prime mover as a sound
source.l8 One interpretation of Fig. 6 is, for example,
that the plane wave reflection coefficient at 30 Hz and AT
= 160 K is > 1 for waves incident in a tube of the same
diameter as the prime mover but in the location of the

i tube in Fig. 6.19 Also shown as dashed lines
in Fig. 6 and 7 is the expression for radiation impedance
faamﬂTmbe.m The expression is Zrag(®0) = —
poc{(koR/2)* ~ i 0.6 kgR] where kg = w/c. To determine
the frequency of oscillation, we solve for the value of ®
such that the complex equation Zpg(w) = Z() measured
at2=0. The operating point AT = 176 K and fres = 116
Hz of the prime mover demonstrated is shown by the
plus symbol in Figs. 6 and 7.

L] 100 120 140
FREQUENCY ()

Fig. 6. Real part of the specific acoustic impedance at
the mouth of the prime mover.

o, re b

» 0 1% M..
FREQUENCY (M)

Fig. 7. Imaginary part of the specific acoustic
impedance.
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To validate the theoretical model, SAL, denoted by
Z(z2=0;c) can be calculated at 2=0.16 Most generally, for
arbitrary termination impedance Zepd(tc) at z=0, the
frequency of operation is determined by setting Zend(c)
= Z(z=0;w¢).2] Here @ = 2ntfreg ~ i #frey/Q is the
complex eigenfrequency of the system where freq is the
resonant frequency and Q is the quality factor. Notice
that w; is a function of the tube geometry and of AT.
The condition Q—ee determines AT for onset of acoustic
oscillation. The complex eigenfrequency has recently
been investigated for a helium or argon-filled prime
mover where the resonance tube was sealed at z=0 by a
rigid cap.22 The presence of the strong acoustic wave
inﬂuausisthe:malsunoundhgs‘byluztnnspman,
in this sense the thermoacoustic oscillation is an examp|
of a self-interacting wave process.

With the impedance tube removed in Fig. §,
measurements were made of the sound spectrum producec
by the prime mover. Figure 8 shows the spectrum for
the onset temperature AT = 176 K (the peak at 425 Hz
was not produced by the prime mover) and for AT = 20¢
K. The ambient temperature was 298 K. A Bruel and
Kjaer type 4147 1/2" microphone was placed at z=0 in
Fig. § for these measurements. The electrical power
delivered to the heat tape was 220 watts. The value AT
209 K was the steady state equilibrium emperature
gradient of the sysiem where heat supplied by the tape
was balanced by the sum of the acoustic energy radiated
away and dissipated in the resonator, and the heat
deposited at the cold heat exchanger due to thermoacous
transport pius normal heat conduction down the gradier

e} 1

8
-

"L_t.-nu'ﬂl
8

Fig. 8. Prime mover sound spectrum for onset AT =
K and a higher AT = 209 K.




The acoustic power radiated at 116 Hz and AT = 209 K
was estimated to be 0.25 watts. Some of the applied heat
energy goes into the acoustical energy in the band near
116 Hz, in the higher harmonics, and into the steady DC
cmhnmofgz&:ewmcsummg’-ﬁ

occurs out of the mover at the center and returns
along the walls.“* Evidence of acoustic streaming is
indicated in Fig. 8 where the generally elevated
background level is due to flow induced noise. A flow
velocity of 4 m/s was measured for the gas exiting the

central part of the prime mover. It is noteworthy that the

cigenfrequencies of the quarter wavelength oscillator are

given by fres(2m+1) where ma=0,1,... and the harmonics
of the fundamental due to nonlinear are given
by fh = fres n where n = 2,3.. . For example, the peak

at 232 Hz does not correspond to any eigenfrequency of

thembe.butupndmedbytheamlymofmgws
mopenmba. Nonlmmmrnclosedﬂmmacmuc
oscillators have also been studied.2

Figure 9 shows AT = 209 K sound produced by the
prime mover with the microphone in the opening and 5.7
cm from the bottom (inside of the tube). At the inside
point the sound pressure level is 145 dB, 116 Hz. The
opening corresponds nominaily to a pressure node, so the
acoustic pressure = cos(rtx/2L) where x is the distance
from the top and L = 72.7 cm is the overall length of the
prime mover. Consequently the pressure at the top is
approximately 8 times the level at 5.7 cm inside, or =
163 dB at 116 Hz. The tube radius R = 4.32 cm is much

1401

FREQUENCY (Mz)

Fig. 9. Prime mover sound spectrum for AT = 209 K in
the mouth and 5.7 cm inside of the prime mover.

less than the acoustic wavelength = 297 cm at 116 Hz, so
the prime mover mouth behaves as a point source of
spherically expanding waves. Figure 10 shows the sound
pressure level for the fundamental at 116 Hz and its
harmonics 5.7 cm inside the prime mover, at the mouth,
and at distances away from the mouth. Efforts to increase
the radiation efficiency of the prime mover in a given
direction would result in more radiated acoustic energy
and would need to be accommodated by increasing the
temperamure gradient.

FUNDAMENTAL: 116 Hz
1407

5
L

SPL (dB re 20 uPa)

-
T

. BACKGROUND LEVEL: 75 d8
200 400 600 900
FREQUENCY (Hz)

Fig. 10. Spectral peaks as a function of distance from
the mouth of the prime mover.

In one experiment the sound production by the
prime mover was suppressed and it was super-heated
AT = 285 K, well beyond the minimal onset AT = 176
K. Figure 11 shows the time evolution of the super-
heated prime mover. A microphone was placed = 14 cm
from the mouth for this measurement. The top figure
shows the first 0.6 seconds. Up to 1.4 seconds the
amplitude grows exponentially with time and beyond it
begins to level off. The bottom figure is a peak detection
of the maximal pressure amplitude, the beginnings of
which is shown in the top figure. Between 1.5 and 2
seconds the prime mover flutters as shown on the bottom
figure and is apparent to an observer. During this time
the built-up hest in the hot end is used up by sound
production and thermoacoustic heat transport down the
temperature gradient. After 2 seconds the prime mover
makes a long transition to a swieady-state pressure level
and the temperature at the hot end slowly diminishes to
the steady state equilibrium value AT = 209 K. The time




evolution of a non superheated prime mover has been
studied by Muller, et. al.26

PRESSURE (Pa)

PRESSURE (Pa)
o

rY P

6 2 4 [ ] 8 10
TIME (sec)

Fig. 11. Time evolution of the superheated prime
mover.

ASUNDERY REMARKS

A series of interesting fundamental investigations
have been performed using a single circular tube for
which the thermal boundary layer thickness was
approximately equal to the tube radius.27-30 Their basic
arrangement was a tube closed at one end by a pressure
transducer and at the other by varying transducers
depending on the particular situation under study. The
gaseous helium filled tube was bent to a U-shape and the
U-portion was immersed in cold helium gas at
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temperatures in the range 4.2 to 45 K.28 The hot end
was held at room temperature. They investigated the
stability curve of the second tube mode,30 the stabiliy
curve of the fundamental mode under a variety of
conditions,2? the universal properties of a thermoacou
oscillator at the intersection of the stability curve of ¢
first and second modes,28 and the universal properties
a driven thermoacoustic oscillator.2” On the practical
side, thermoacoustics refrigeration has been a recent tc
of investigation.31"34 Traveling wave thermoacousti
mginsntilizingtheStirli_ng thermodynamic cycle ha:
also been of recent interest.35-36 We acknowledge Of
of Naval Research support.
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Specific acoustic impedance measurements of an air-filled

thermoacoustic prime mover
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Thermoacoustic heat engines can be used to produce sound from heat and to transport heat
using sound. The air-filled prime mover studied is a quarter wavelength resonator that
produces sound at nominally 115 Hz for a temperature difference of AT = 176 K. Specific
acoustic impedance at the mouth of the prime mover was measured as a function of the -
temperature difference between the hot and cold heat exchangers. The real part of the
impedance changes sign for sufficiently large temperature differences, indicating the possibility
of sound production. The theoretically predicted radiation impedance of an open pipe was
compared to the measured impedance curves. The operating point was confirmed from the
intersection of these experimental and theoretical impedance curves. These measurements
allow for analysis of the prime mover as a sound source as discussed in a recent theoretical
paper [T. B. Gabrielson, J. Acoust. Soc. Am. 90, 2628-2636 (1991} ].

PACS numbers: 43.35.Ud, 43.85.Bh

INTRODUCTION

Thermoacoustic engines are used to transport heat us-
ing sound and to produce sound from heat.' The latter appli-
cation is the focus of this letter. Thermoacoustic sources are
also known as prime movers by analogy to heat engines in
thermodynamics.' Recent work has considered use of ther-
moacoustic prime movers as underwater sound sources.>*
Applications to both gas and liquid-filled prime movers were
investigated. A schematic diagram of a prime mover is given
in Fig. 1. Starting at the top in Fig. 1, the essential elements
are a section of a resonator with a cap on the end to establish
a velocity node; a hot heat exchanger, indicated by vertical
lines, to inject heat; a heat ionsulating section, shown as the
squares region, known as the stack which supports the tem-
perature gradient between the heat exchangers; and a cold
heat exchanger to remove excess heat. When the hot heat
exchanger faces a velocity nodé (or pressure antinode),
acoustic power can be produced in the stack for sufficiently
large temperature gradients. The radiation impedance at the
mouth and the length of the resonator determine the condi-
tions for impedance matching the open resonator section
and the prime mover.’ The general utility of the impedance
framework was recently developed* for the linear theory of
thermoacoustics.> The utility of impedance measurements
for analyzing prime movers is demonstrated experimentally
in this letter.

I. PRIME MOVER IMPEDANCE MEASUREMENTS

The experimental arrangement used is shown in Fig. 1.
A prime mover was mounted vertically and an impedance
tube was attached at the bottom via a flange. The prime

*' Current address: Atmospheric Sciences Center, Desert Research Insti-
tute, P.O. Box 60220, Sage Bldg.. Reno, NV 89506-0220.
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mover was built originally for use as a demonstration device
and for practice in fabricating the elements. A section of
resonator made of copper pipe of length 20.96 cm and inner
radius 4.32 cm, and capped at the top, was the first element.
High-temperature heat tape was wrapped around the entire
section followed by a 1-‘n. layer of heat insulating material.
Heat was transported by conduction to next element which
was the hot heat exchanger. A type K thermocouple was
placed inside of the hot exchanger to monitor the tempera-
ture. The stack (or thermoacoustic engine) that supports
the temperature gradient was the next element and will be
discussed below. Heat was removed at the cold exchanger by
water from the lab sink. Another section of resonator, which
was wrapped with water-circulating tubing, was the next
element. This section was 44.45 cm long with a radius of 4.32
cm.

The heat exchangers were made by laminating with ep-
oxy copper sheets spaced by aluminum sheets. The copper-
aluminum laminate was then turned to a cylindrical shape
using a lathe. The cylindrical boundary was cladded with a
shell of copper about 2.5 mm thick by using an electroplating
technique. The heat exchanger was then machined into a
disk form and inserted into a flanged holder for attachment
to the other clements. Then the aluminum was etched away
using a diluted hydrochloric acid solution. The resulting
heat exchanger was made entirely of copper with plate-to-
plate spacing of the copper strips equal to 1.65 mm. The cold
heat exchanger flange included an open tank for water circu-
lation around the periphery of the plates. The hot and cold
exchangers were 1.638 and 1.610 cm long, and had open-to-
total volume ratios of ! = 0.74.

The stack was a ceramic cylindrical sample of a mono-
lithic catalyst support.” Reference 7 describes the analysis of
some acoustic properties of the catalyst supports. [t is a sec-
tion of a porous medium in which the open pores have square
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FIG. 1. Air-filled thermoacoustic prime mover (2> 0) and impedance tube.
Lengths of each thermoacoustic element are given by L, R is the characteris-
tic transverse dimension, and §} is the porosity. Microphones were separat-
ed by 10 cm and were 5 cm from the speaker and prime mover. Impedance
tube inner radius was 7.3 cm.

boundaries of semi-width 0.77 mm, and are straight tubes in
the z direction (Fig. 1). The ceramic sample had a radius of
7.3 cm. To attach it to the heat exchangers, a ring of inner
radius 4.32 cm, outer radius 7.3 cm, and depth 3.2 mm was
removed from the ceramic sample. This left a protruding
central portion. Copper rings of thickness 3.2 mm, inner ra-
dius 4.32 cm, and outer radius of 12 cm were supported be-
tween the ends of the ceramic piece using threaded rod
stand-offs. Holes were drilled in the copper disks to match
the heat exchanger flange holes.

An impedance tube with an inner-radius of 7.3 cm was
attached at the bottom of the prime mover. Microphones
were placed S cm from the bottom of the prime mover and
the speaker below (10-cm separation). The impedance tube®
is generally used to determine the specific acoustic imped-
ance (or pressure divided by particle velocity) at z=0in
Fig. 1. Denote by P,, V|, and v, the pressure, volume veloc-
ity, and particle velocity at z = 0 in the impedance tube of
cross-sectional area 4, = 167.5 cm®. Denote by subscript 2
the corresponding quantities for the prime mover. Assuming
conservation of pressure and volume velocity at the inter-
face, P,/V, = P,/V,. The quantity measured using the im-
pedance tube was Z, = P, /v, =A,P\/V = A\P,/V,= 4,
P,/ (v,A,). The desired quantity Z, = P,/v, was thus deter-
mined from Z, = Z,4,/A,. Neglect of interfacial effects of
the impedance tube to prime mover radius discontinuity is a
low-frequency approximation. The prime mover was evalu-
ated using swept sine wave analysis at sufficiently low ampli-
tudes that negligible heat was transported thermoacoustical-
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FIG. 2. (a) Real and (b) imaginary parts of the measured specific acoustic
impedance (solid lines) as a function of the externally applied temperature
difference. The dashed line is the theoretical radiation impedance for the
prime mover mouth. The pius symbol locates the operating point of the
prime mover at the onset of sound production at 115 Hzand AT = 176 K.
The ambient temperature was 296 K.

ly. The measured impedance can become a function of the
amplitude of driving pressure signal at high levels due to the
alteration of the static temperature gradient by thermoa-
coustic streaming.’

The real and imaginary parts of the measured specific
acoustic impedance as a function of the temperature differ-
ence are shown in Fig. 2(a) and (b). The real part becomes
negative at some frequencies, indicating the possibility of
having an active system with reflection coefficients greater
than one.'” When the impedance tube is removed, which of
course changes the prime mover termination impedance,
sound at a nominal frequency of 115 Hz is produced for
AT>176 K. The expression for the specific acoustic radi-
ation impedance'' at the mouth of the prime mover is
Z, (@) = — poe[ (k4R /2)* — i 0.6k,R]1, where k, = w/c,
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o is the radian frequency, p, is the ambient air density, ¢ is
the adiabatic sound speed of air, and R = 4.32 cm is the tube
radius. The minus sign occurs because of our choice for the
positive direction of z in the coordinated system on Fig. 1.
Radiation impedance is represented by the dashed lines in
Fig. 2(a) and (b). One immediate check of the measure-
ments is that the initial operating point (115 Hz, AT = 176
K) given by the plus symbols occurs, for both the real and
imaginary parts of the radiation impedance, at the intersec-
tion of the calculated and measured impedance values.

il. CONCLUSION

Specific acoustic impedance measurements were made
as a function of the temperature gradient across the stack.
Among other uses, these measurements are helpful for eval-
uating the possibility of using the prime mover as a sound
source. Another interpretation of Fig. 2 is, for example, that
the plane wave reflection coefficient at 80 Hz and AT = 160
K is > 1 for waves incident in an infinite length tube of the
same diameter as the prime mover but in the location of the
impedance tube in Fig. 1. For prime movers far above the
onset of sound production, or for strongly driven thermoa-
coustic refrigerators, the temperature distribution from hot
to cold is not simply the static distribution established by the
thermal conductivity of the gas and stack. The presence of
the strong acoustic wave influences its thermal surround-
ings’ by heat transport and in this sense the thermoacoustic
oscillation is an example of a self-interacting wave process.
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